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The landscape of alternative polyadenylation in
single cells of the developing mouse embryo
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3′ untranslated regions (3′ UTRs) post-transcriptionally regulate mRNA stability, localization,

and translation rate. While 3′-UTR isoforms have been globally quantified in limited cell types

using bulk measurements, their differential usage among cell types during mammalian

development remains poorly characterized. In this study, we examine a dataset comprising ~2

million nuclei spanning E9.5–E13.5 of mouse embryonic development to quantify

transcriptome-wide changes in alternative polyadenylation (APA). We observe a global

lengthening of 3′ UTRs across embryonic stages in all cell types, although we detect shorter

3′ UTRs in hematopoietic lineages and longer 3′ UTRs in neuronal cell types within each

stage. An analysis of RNA-binding protein (RBP) dynamics identifies ELAV-like family

members, which are concomitantly induced in neuronal lineages and developmental stages

experiencing 3′-UTR lengthening, as putative regulators of APA. By measuring 3′-UTR iso-

forms in an expansive single cell dataset, our work provides a transcriptome-wide and

organism-wide map of the dynamic landscape of alternative polyadenylation during mam-

malian organogenesis.
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During transcriptional elongation, the cleavage and poly-
adenylation machinery governs the specification of the 3′-
terminal end of an mRNA1. This regulated process can

generate a diversity of 3′-UTR isoforms for any given gene,
dramatically altering the 3′-UTR length and sequence of the
resulting mature transcripts2. This phenomenon, known as
alternative polyadenylation (APA), has been observed in over
70% of mammalian genes3,4. Alternative 3′-UTR isoforms bind to
different sets of microRNAs and RNA-binding proteins, which
collectively modulate a multitude of post-transcriptional gene
regulatory mechanisms5. These include changes in mRNA
localization6, degradation rates7–9, and translational efficiency10.
The differential abundance of a variety of nuclear factors serves to
regulate APA in a cell-type-specific manner1. Abnormal regula-
tion of the cleavage and polyadenylation machinery has also been
associated with hyperproliferative or disease states such as
cancer11–13.

Techniques to directly measure APA in the transcriptome
largely rely upon the isolation of RNA from bulk tissue, resulting
in an average readout of the landscape of 3′-ends in a hetero-
geneous population of cells. Existing 3′-end sequencing methods
include 3′-seq/3SEQ14,15, 3P-seq8,16, PAS-seq17, 3′READS18,
PolyA-seq3, and 2P-seq19. The successful application of these
methodologies in mammalian cells has led to the annotation of
hundreds of thousands of polyadenylation sites (PAS) in both
human and mouse genomes20,21. Bulk 3′-end sequencing and
similar transcriptomic data have guided the observation that 3′-
UTRs generally lengthen during mammalian embryogenesis22,
with proliferating cell types such as blood exhibiting shortened 3′-
UTRs11,12 and neuronal ones exhibiting lengthened 3′-UTRs17,23.

In contrast to bulk methods, single-cell RNA sequencing
(scRNA-seq) protocols capture a rich diversity of individual cell
types, with many protocols enriching for mRNA 3′-ends via
poly(A) priming24–29. Thus, these technologies inherently offer
an unprecedented opportunity to observe APA events during the
process of cellular differentiation. They also enable the decom-
position of complex tissues into individual cell types, enabling the
assessment of APA with greater cell-type resolution. Although a
proof-of-concept study has demonstrated the utility of scRNA-
seq data in evaluating APA30, such methods have not yet been
applied to investigate more comprehensive scRNA-seq datasets
such as those capturing dozens of cell types during a mammalian
developmental time course31,32. In this study, we examined APA
using MOCA (“mammalian organogenesis cell atlas”), a dataset
comprising single nucleus transcriptional profiling of ~2 million
nuclei encompassing 38 major cell types across five stages (i.e.,
E9.5, E10.5, E11.5, E12.5, and E13.5) of mouse embryonic
development31.

Results
An integrated annotation set of 3′-UTRs and poly(A) sites to
evaluate APA. Given the reliance of many scRNA-seq protocols
on poly(A) priming, such methods enrich for both mRNA 3′-
ends as well as internal A-rich stretches of homopolymers. Thus,
internal priming artifacts obscure accurate quantitation of APA,
even more so in datasets in which immature mRNAs (i.e., without
excised introns) are isolated from the nucleus, as is the case with
the sci-RNA-seq3 protocol used in MOCA31. Please note that in
the remainder of the manuscript, we often use the term “cells” in
relation to scRNA-seq profiles. However, all MOCA data were
derived from nuclei rather than cells. To address the source of
bias emerging from internal priming artifacts, we sought to
develop a simple computational method to deconvolve the data to
specifically isolate and quantify mRNA 3′-ends. Toward this goal,
we built integrated databases of poly(A) site (PAS) and 3′-UTR

annotations to guide the interpretation of which subset of map-
ped reads were supported by orthogonal evidence to reflect
authentic 3′-termini, as opposed to A-rich sites internal to a
mature or nascent transcript. In doing so, our goal was to
minimize the shortcomings of any individual database, each of
which utilizes different data sources and strategies for PAS and
3′-UTR annotation.

To generate a reliable PAS set, we considered three of the most
comprehensive mouse PAS annotation databases available with
respect to the mm10 mouse genome build: Gencode M2533,
which contains 56,592 PASs; PolyA_DB v320, which contains
128,052 PASs; and PolyASite 2.021, which contains 108,938 PASs.
The three databases differ in their use of manually curated
annotation and Expressed Sequence Tag (EST) data (as in
Gencode M2533), the amount of 3′-end sequencing data (246 and
178 mouse samples for PolyA_DB v320 and PolyASite 2.021,
respectively), and their computational processing pipelines. We
intersected the PASs from each pair of these resources to evaluate
the consistency among databases. While the majority of sites were
present in at least two databases, 40.0%, 29.4%, and 30.4% were
unique to PolyA_DB, PolyASite, and Gencode, respectively
(Fig. 1a). To verify the reliability of PASs present in only a
single database (and therefore the most likely to contain false
positives), we plotted the profile of nucleotide frequencies in
the ± 50 nt region surrounding the annotated cleavage and
polyadenylation sites (Supplementary Fig. 1a). The unique PASs
of each resource exhibited profiles consistent with positionally
enriched mammalian motifs known to guide mRNA cleavage,
including several U-rich motifs, the upstream AAUAAA motif,
and the downstream GU-rich motif34. Moreover, we detected
strong enrichment of reads mapping immediately upstream of
this set of PASs, with the strongest enrichment spanning the
−300 nt to+ 20 nt region around the PAS (Supplementary
Fig. 1b). Given that each PAS database was enriched in known
PAS motifs, associated with mapped reads, and held information
complementary to the other databases, we carried forward an
integrated PAS set derived from the union of the three databases.
This integrated PAS set recapitulated these same characteristics,
exhibiting both consistency with known PAS motifs and strong
read enrichment upstream of the sites (Fig. 1b, c). Finally, to link
PASs to specific genes, we utilized our previous 3′-UTR
annotation pipeline (“Methods”)9,35 to establish an integrated
set by carrying forward the longest 3′-UTRs from four resources:
(i) Gencode M2533, (ii) RefSeq36, (iii) 3′-UTRs with extreme
lengthening23, and (iv) bulk 3P-seq-based annotations derived
from ten mouse tissues and cell lines8. This integrated 3′-UTR
annotation set helped minimize the possibility that a PAS may be
annotated outside of a known 3′-UTR and thus remain unlinked
to a specific gene.

Using our integrated PAS and 3′-UTR databases (Fig. 1d), we
sequentially filtered our scRNA-seq reads from MOCA to focus
on the subset mapping to 3′-UTRs within the −300 to +20
vicinity of a known PAS (Fig. 1c). Due to the abundant mapping
of reads to introns in the nucleus-derived MOCA dataset
(Supplementary Fig. 1c), generally representing internal priming
within unspliced transcripts, there was nearly a tenfold loss in
read counts after iterative steps of filtering; however, over 200
million reads were carried forward (Supplementary Fig. 1d). As
expected, discarded reads were associated with enriched
A-richness downstream (but not upstream) of their 3′-termini
(Supplementary Fig. 1e), and were not significantly associated
with cryptic PASs absent from our unified PAS database
(Supplementary Fig. 1f). Next, we counted reads passing the
filtering steps towards the single annotated PAS in its vicinity,
enabling the tabulation of read counts associated with each PAS
(Fig. 1d). In ambiguous cases in which a read was located in the
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vicinity of multiple PASs, we greedily assigned the read to count
towards the PAS harboring the most uniquely assignable reads.
Finally, based upon the relative counts assigned to each PAS for a
given gene, we visualized the “isoform inclusion rate” (IIR),
reflecting the proportion of 3′-UTR isoforms which include a
given nucleotide position8,9,35 (Fig. 1d).

To validate that these filtering and read-to-PAS assignment
procedures led to reliable results, we performed two quality
control (QC) comparisons. As a first QC, reasoning that the
removal of internal priming artifacts should improve the
quantification of relative gene expression levels, we compared

the relationship between PAS counts and median gene expression
levels computed across a panel of 254 mice RNA-seq samples37.
While the traditional method of counting reads in the gene body
displayed a strong correlation to median expression levels
(Pearson r= 0.81, Spearman rho= 0.77), it displayed a clear
bias in inflating estimates for a large cohort of genes (Fig. 1e).
Considering only our filtered PAS-assigned reads ameliorated this
bias, which led to a stronger correlation to relative mRNA
expression levels (Pearson r= 0.88, Spearman rho= 0.85)
(Fig. 1e). We speculated that the bias in the gene body method
relative to the PAS-assigned read counting method could be
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Fig. 1 A computational pipeline to accurately quantify 3′-UTR isoform abundances from scRNA-seq data. a Venn diagram of a set of three PAS
annotation resources and their degree of intersection. A PAS intersecting within ± 20 nt from another was considered an intersecting hit to account for the
heterogeneity of the cleavage and polyadenylation machinery16. b Profile of nucleotide frequencies in the ± 50 nt vicinity of the annotated cleavage site
position, derived from the union of the three databases. Shown above the plot are the known positionally enriched mammalian motifs known to guide
mRNA cleavage34. c Distribution of scRNA-seq reads mapping within the ± 400-nt vicinity of the annotated cleavage site position, derived from the union
of the three databases. To avoid an ambiguous signal, the analysis was restricted to PASs not within the same ± 400-nt window as another PAS. Data are
binned at 5-nt resolution. Shown within the dotted red lines are the acceptable distance thresholds to associate a read to an annotated PAS. See also
Supplementary Fig. 1 for comparisons of (b, c) for each individual PAS database. d Schematic depicting the association of each scRNA-seq read to a PAS in
order to quantify relative PAS abundances for a gene. Shown from top to bottom are: (i) the read coverage of scRNA-seq reads mapped to the gene. (ii)
The three PAS annotation resources considered, showing the location of each PAS along the 3′-UTR. (iii) The subset of chosen PASs to which reads were
greedily assigned, colored from blue to green to indicate which reads from the coverage plot were assigned to them. (iv) The three gene annotation
databases integrated with bulk 3P-seq data from ten tissues and cell lines8 to identify the longest known 3′-UTR. This integrated 3′-UTR was used to
associate PASs to the gene. (v) A visualization of relative 3′-UTR isoform abundances after read-to-PAS assignment, with vertical lines at each chosen PAS
proportional to the assigned number of read counts. Reads not overlapping within the −300 to +20 vicinity of a known PAS were treated as likely internal
priming artifacts and discarded. (vi) The resulting isoform inclusion rate (IIR) plot to quantify the cumulative proportion of 3′-UTR isoforms remaining
along the length of a 3′-UTR. See also Supplementary Data 1 for the integrated 3′-UTR database and gene annotations. e Scatter plots comparing gene
expression levels estimated using scRNA-seq read abundances mapping to the full gene body (left panel) or the sum of reads mapping to PASs (right
panel), relative to median gene expression levels from bulk RNA-seq data37 (n= 19,517 protein-coding genes). Regions are colored according to the density
of data from light blue (low density) to yellow (high density). Shown are the corresponding Pearson (r) and Spearman (rho) correlations for each
comparison. See also Supplementary Fig. 2 for sequence features explaining biased estimates in the gene body approach. f Shown are IIR plots for two
genes, comparing the profiles for the raw scRNA-seq data and post-processed data after read-to-PAS assignment with respect to the profile for bulk 3P-
seq data8 as a gold standard. Slight vertical jitter was added for enhanced line visibility. See also Supplementary Fig. 3 for a global comparison among
all genes.
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explained by the over-abundance of intron-mapping reads
(Supplementary Fig. 1c) and enrichment of A-rich stretches that
nucleate the production of internal priming artifacts. Indeed, a
lasso regression model trained to predict the difference between
the two strategies confirmed that intron length was strongly
associated with inflated counts; moreover, “AAA” was the top-
ranked of all 3-mers associated with inflated counts in the gene
body (Pearson r= 0.56, Spearman rho= 0.58, Supplementary
Fig. 2).

As a second QC, we evaluated the similarity between our IIR
profiles to those derived from bulk 3P-seq data8. We considered
the latter as a gold standard in accurately quantifying PAS
abundances due to the involvement of a splint-ligation step in the
3P-seq protocol, which specifically removes internal priming
artifacts16. We found that the IIR profiles for our PAS-assigned
reads more strongly mirrored those of bulk data for two
representative genes (Fig. 1f). Quantifying the deviation from
bulk as the Mean Absolute Deviation (MAD) (Supplementary
Fig. 3a) allowed us to measure the deviations between our pre-
and post-processed data to bulk 3P-seq measurements. Applying
this metric globally to all genes uncovered that 78% of genes
exhibited improved similarity to bulk 3P-seq after the reads were
assigned to PASs; moreover, 47% of genes achieved MAD ≤ 0.1
after read-to-PAS assignment, relative to only 7% of genes
beforehand (Supplementary Fig. 3b). Inspection of IIR profiles for
nine representative genes further confirmed the general improve-
ment in consistency with bulk 3P-seq data (Supplementary
Fig. 3c).

Global differences in 3′-UTR length across mouse cell types
and developmental time. Having assigned reads to PASs and
linked them to genes, we next sought to evaluate global properties
of 3′-UTR shortening and lengthening (i.e., as quantified by
differential PAS usage) across cell types and developmental time.
Towards this goal, we computed a “gene by cell” sparse matrix of
the mean length among all 3′-UTR isoforms, weighted by their
respective counts. For each gene, we then computed each cell’s
deviation from the mean of 3′-UTR lengths across cells, con-
sidering only nonmissing values. Finally, for each cell, we com-
puted the mean of these deviations across genes as a measure of
the global behavior of the transcriptome through the perspective
of APA. We projected these measurements onto a global map of
38 t-SNE clusters representing all major mouse cell types31.
Highlighting the top-ten ranked t-SNE clusters with the largest
differences, we discovered the greatest average 3′-UTR lengths
among stromal cells and three neuronal cell types; in contrast, the
shortest lengths occurred in three blood cell types, hepatocytes,
chondrocytes, and osteoblasts (Fig. 2a). UMI counts were only
weakly correlated to changes in 3′-UTR length and therefore were
not a confounding variable (Supplementary Fig. 4a). Sub-
clustering each of the 38 t-SNE clusters reinforced these find-
ings but revealed additional heterogeneity within each cell type
(Supplementary Fig. 4b). Segregating our dataset by the five
sampled timepoints, we observed an apparent global 3′-UTR
lengthening across developmental time (Fig. 2b). Finally, to
quantify the joint impact of cell type and developmental stage, we
computed the average behavior among genes and cells associated
with each of 38 t-SNE clusters and 5 developmental stages. Par-
titioning the data in this manner reinforced our observation that
the average 3′-UTR length increased in nearly every cell type as
developmental time progressed (Fig. 2c). The underlying cell
counts from our bins were not correlated to changes in 3′-UTR
length for this analysis and therefore were not a confounding
variable (Supplementary Fig. 4c). Neuronal cell types clustered
together and exhibited the greatest 3′-UTR lengthening relative to

other clusters at E13.5; in contrast, blood cell types exhibited
highly shortened 3′-UTRs at E9.5 and grew until E13.5 to mean
lengths similar to those of other cell types at E9.5 (Fig. 2c).

Next, we evaluated differences in global 3′-UTR length with
respect to developmental trajectories computed using UMAP, an
embedding that more faithfully recapitulates cell–cell relation-
ships and intermediate states of differentiation relative to t-SNE.
Evaluating ten developmental UMAP trajectories31, we again
observed a global lengthening in 3′-UTRs in nearly every
trajectory (Fig. 3a). Mirroring our previous findings, the neural
tube/notochord and the neural crest trajectories (capturing
neurons of the peripheral nervous system) showed the greatest
lengths relative to other cell types at E13.5, while the hematopoi-
esis trajectory displayed the shortest lengths relative to other cell
types at E9.5 (Fig. 3a). A visual comparison of these three
trajectories with respect to changes in both developmental time
and 3′-UTR length showed that the process of 3′-UTR
lengthening occurred contemporaneously with cellular differen-
tiation, with gradients of lengthening emerging in intermediate
cellular states (Fig. 3b–d). Notably, in the hematopoiesis
trajectory, a major difference in 3′-UTR length could be explained
by the switch from primitive to definitive erythropoiesis, rather
than gradual lengthening within either lineage (Fig. 3d).

Dynamic gene-specific patterns of alternative polyadenylation
across early development. While our previous analyses revealed
transcriptome-wide trends, it remained unclear how specific
changes in APA manifested at the resolution of individual genes.
To investigate this, we tabulated read counts assigned to each
gene (i.e., for each PAS and developmental stage, aggregating
information across cell types), and used a χ2 test30 to evaluate
statistically significant differences in APA for 8653 genes with at
least 100 reads in each of the five developmental stages (Sup-
plementary Data 2). This procedure identified 5169 genes sur-
passing a Benjamini–Hochberg (BH)-corrected false discovery
rate (FDR) P value threshold of 0.05. Evaluating the dynamics of
the mean 3′-UTR length for this cohort of significant genes at
each stage, we discovered that 62% of genes fell into a large cluster
that exhibited consistent lengthening over time (Fig. 4a). While
the majority of these genes showed the greatest increase in
lengthening from E11.5 to E12.5, a minority lengthened the most
strongly from E10.5 to E11.5 (Fig. 4a). About 38% of the sig-
nificant genes did not simply lengthen across developmental
stages, with about half of these progressively shortening over time
(Fig. 4a). As an alternative method to evaluate transcriptome-
wide changes, we computed the entropy across PASs for each
gene and developmental stage. This alternative visualization
scheme uncovered that ~75% of genes obey a progressive decrease
in entropy, indicating that as developmental time progresses, a
few PASs become increasingly dominant for the vast majority of
genes; in contrast, ~15% of genes exhibited the opposite pattern
of increased entropy across time, with the remaining displaying
heterogeneous patterns (Supplementary Fig. 5a, b).

We extended our previous gene-centric IIR plotting scheme
(Fig. 1d) to visualize the landscape of APA across the five
developmental stages assayed, this time using a χ2 test to highlight
individual PASs which were significantly different in at least one
stage (Fig. 4b). Using this scheme, we visualized an assortment of
genes from different clusters to dissect the nature of the isoform
switching events contributing to changes in 3′-UTR lengths
(Fig. 4c). Many of these genes contained dozens of PASs whose
relative proportions significantly changed across time. For genes
belonging to the dominant cluster (Tmem33, Lrtm1, Dcp1b, and
Add2 in Fig. 4a), later developmental stages led to the progressive
selection of distal isoforms, leading to progressive 3′-UTR
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lengthening (Fig. 4c). The opposite pattern was observed for a
gene belonging to a smaller cluster (Srl in Fig. 4a), whereby the
proximal isoform was selected more frequently over the distal as
time progressed, leading to progressive 3′-UTR shortening
(Fig. 4c). For yet other genes, the choice of distal isoforms was
highly time-dependent. For example, Mtap displayed a near-
complete proximal-to-distal isoform switching event in E11.5,
subsequently lengthening beyond baseline levels in later devel-
opmental stages; in contrast, Mrpl22 exhibited progressive
shortening, with a dominant distal-to-proximal isoform switching
event occurring in E10.5 (Fig. 4c).

Finally, we performed a similar gene-centric analysis, this time
evaluating differences among individual cell types (i.e., aggregat-
ing information across the five developmental stages). Among
1491 genes with at least 20 reads in each of the 38 t-SNE clusters,
we identified 1078 genes surpassing a BH-corrected FDR P value
threshold of 0.05, as evaluated by the χ2 test (Supplementary
Data 4). This subset of significant genes largely clustered into four
cell-type groups (C1–C4, Fig. 5a) when evaluating differences in
mean 3′-UTR length, with cell types within each group displaying
strongly correlated patterns across all of the genes. C1, which
consisted primarily of neuronal cell types, was unique in that the
vast majority of genes displayed global lengthening; conversely,
the primitive erythroid lineage was dominated by genes
experiencing 3′-UTR shortening (Fig. 5a). In special cases, we
detected a highly gene-specific and cell-type-specific pattern, as in
the case of Bclaf1 showing 3′-UTR lengthening within a t-SNE

cluster annotated as lens cells (Fig. 5b). However, for most genes,
all of the cell types within each cluster displayed a concerted shift
toward either 3′-UTR lengthening (e.g., cluster C1 in Gnb1, C1
and C4 in Samm50) or 3′-UTR shortening (e.g., cluster C2 in
Polr3k, C1 in Hoxd4) (Fig. 5b).

When visualizing PAS usage with respect to entropy, several
cell types emerged as displaying interesting patterns: the primitive
erythroid lineage showed heightened entropy across most genes,
whereas neutrophils—and to a smaller degree, the lens—showed
decreased entropy (Supplementary Fig. 6a, b). This observation
suggests a potential for cell-type-specific regulatory mechanisms
that guide a more stochastic or more defined choice of PASs,
respectively. A smaller subset of genes, such as Sec11a, notably
displayed higher entropy among neuronal cell types, consistent
with an active mechanism governing a switch towards longer 3′-
UTR isoforms (Supplementary Fig. 6a, b).

Putative RNA-binding protein regulators of alternative poly-
adenylation. Reasoning that changes in the regulation of APA
may be coupled to the dynamically changing expression of RNA-
binding proteins (RBPs), we searched for RBPs with expression
level differences across our five developmental stages and 38 cell
types. Having demonstrated that PAS-mapping reads serve as an
improved proxy for relative gene expression levels (Fig. 1e), we
quantified gene expression levels for all protein-coding genes as
counts per million (cpm) (Supplementary Data 6 and 7) and
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Fig. 2 Differential 3′-UTR lengthening among diverse cell types and developmental stages. a t-SNE embedding of all cells from all developmental stages
sampled31, with each cell colored according to the mean difference in 3′-UTR lengths across all genes. The top-ten ranked clusters with the greatest
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partitioning the dataset into its five composite developmental stages (spanning E9.5–E13.5). c Heatmap of the mean difference in 3′-UTR length after
aggregating cells from each developmental stage and cell type, derived from each of 38 t-SNE clusters. Color scales are the same as those shown in (a).
Missing values (shown in white) correspond to instances with too few (<20) cells to accurately estimate. Heatmap is clustered by Euclidean distance as a
distance metric. Significant differences between the group means (i.e., for each row) were assessed by a one-way ANOVA test, with P values adjusted for
multiple hypothesis testing with a Bonferroni correction (*P < 0.001). Exact P values are provided in Supplementary Table 1. See also Supplementary Fig. 4
for comparisons among t-SNE subclusters and an analysis of potential confounding biases.
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cross-referenced these genes to a database of putative RBPs in the
mouse genome38.

Evaluating relative differences in RBP expression across our
five developmental stages, we observed that about 36% of RBPs
exhibited increased expression across time (Supplementary
Data 8; log2 fold change >0 for E13.5 relative to E9.5), while
the remainder decreased or were stable (Supplementary Fig. 7a).
Performing a similar analysis across the 38 cell types (i.e., but
independent of the developmental stage), we observed that about
26% of RBPs were enriched in neuronal lineages (Supplementary
Data 8; log2 fold change >0 for neuronal lineages relative to other
cell types). Interestingly, the vast majority of RBPs were depleted
in neuronal lineages relative to other cell types (Fig. 6a). Given
our observation that 3′-UTRs lengthen both across the develop-
mental stages and most dramatically in neurons (Fig. 2c), we
sought to identify putative RBP regulators induced or repressed
both across time and specifically in neurons relative to other cell
types. We observed a statistically significant correlation in the
RBP expression differences in these two conditions (Pearson
r= 0.59), with a small group of outliers induced by at least
twofold along both axes (Fig. 6b).

The most salient factors that were induced comprise a large
family of ELAV-like (i.e., “Embryonic Lethal Abnormal Vision”-
like) RBPs, including Elavl2-4 (also known as HuB, HuC, and
HuD, respectively) and Celf2-6 (CUGBP Elav-like family
members, also known as BRUNOL-3, 1, 4, 5, and 6, respectively)
as well as splicing regulators Nova1-2 and Rbfox1-3; in contrast,
Hnrnpf and Ptbp1, which have been implicated in APA
regulation, were among those depleted (Fig. 6b). Additional
top-ranked RBPs (i.e., including those which are either strongly
activated or repressed) also serve as candidate regulators of APA
(Supplementary Data 8). The expression of Elavl2-4, Rbfox1-3,

and Celf2-6 monotonically increased in expression across the
developmental stages (Fig. 6c and Supplementary Fig. 7b, c), and
were significantly higher in neuronal cell types, while Elavl1 (also
known as HuR) and Celf1 (also known as BRUNOL-2) remained
at similar levels in each context (Fig. 6d). In contrast, Hnrnpf and
Ptbp1 monotonically decreased (Supplementary Fig. 7d) and were
relatively higher in other cell types relative to neurons (Fig. 6d).
These expression patterns are broadly consistent with the known
brain-specific and ubiquitous expression associated with ELAV-
like39–41 and Nova42 family members, and support the growing
functional evidence for Elavl2-443,44, Rbfox245, and Nova1-242 in
the regulation of APA. In addition, we found that ELAVL2-4,
CELF2-6, and RBFOX1-3 form an experimentally supported
network of protein-protein interactions46 (Supplementary Fig. 7e).
Our data are also consistent with the blood-enriched expression
of Hnrnpf and Ptbp1, factors known to competitively bind with
CstF-64 to promote proximal 3′-UTR isoform choice47–49.

Discussion
Despite the rapid growth of single-cell RNA sequencing data in
recent years, the vast majority of analyses routinely overlook the
phenomenon of alternative polyadenylation. Although scRNA-seq
was initially developed to measure gene expression levels, multiple
orthogonal forms of information are also effectively captured. For
example, RNA velocity analysis, which estimates future tran-
scriptome state by modeling intron/exon ratios, illustrates the ability
to extract dynamical information about cellular differentiation50. In
this work, we further develop a computational pipeline to quantify
3′-ends in scRNA-seq data by cross-referencing an integrated
annotation set of 3′-UTRs and polyadenylation sites. This pipeline
closely recapitulates prior bulk measurements, yet further enables a
more granular understanding of APA with respect to both time and
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Fig. 3 Differential 3′-UTR lengthening among diverse developmental trajectories. a Heatmap of the mean difference in 3′-UTR length after aggregating
cells from each developmental stage and one of ten developmental trajectories computed using UMAP31. Heatmap is clustered by Euclidean distance as a
distance metric. Significant differences between the groups means (i.e., for each row) were assessed by a one-way ANOVA test, with P values adjusted for
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cell type. Although the utility of scRNA-seq to give insight into
APA has been recognized recently30, we extend this line of work to
an expansive atlas of cell types in a developmental time course
encompassing 61 embryos and spanning multiple stages of
embryonic development31.

Our findings reinforce the principle that the most proliferative
cell types such as blood maintain shorter 3′-UTRs11,12, on average,
while lowly proliferative ones such as neurons maintain lengthened
3′-UTRs17,23. As differentiation progresses, cells of all types natu-
rally become less proliferative, leading to an observed global
lengthening of 3′-UTRs in all cell types22,51. A major functional
consequence of this is that the global shortening of 3′-UTRs could
lead to the evasion of microRNA-mediated repression, resulting in
greater mRNA stabilities across the transcriptome and enhanced
protein synthesis rates in proliferative cells11,12. In some cases, 3′-
UTR shortening might also potentiate enhanced microRNA-
mediated repression of anti-proliferative genes52. In contrast to
previous work, which often binarized the landscape of 3′-termini
into proximal and distal isoforms due to a limited PAS annotation
set22,23, we develop more general metrics (e.g., changes in mean
length and entropy) that consider the relative proportions of the
many PASs within each gene. While most genes obey a canonical
pattern of 3′-UTR lengthening and a concomitant reduction in
entropy over time, a small subset of genes deviate from this trend.
While the former can be explained by modulation of trans-acting
regulators of APA that disfavor weak proximal PASs over time,
genes deviating from the trend can potentially be explained by
several possible regulatory mechanisms: (i) enhanced recruitment of
the cleavage and polyadenylation (CP) machinery to a proximal

PAS by a nearby RBP motif; (ii) suppressed post-transcriptional
recruitment of CP machinery to distal PASs; or (iii) epigenetic
regulation of PAS choice by CpG methylation status, nucleosome
positioning, or histone modification state1. In addition, we observed
that most cell types can be grouped into one of four clusters that
obey similar trends across genes. Collectively, these observations are
consistent with the evolution of regulatory mechanisms that act in a
gene-specific and tissue-dependent manner1,5.

An investigation into putative RNA-binding protein regulators
that are co-activated in cellular contexts experiencing 3′-UTR
lengthening revealed the induction of RBPs of the ELAV-like
family, including Elavl2-4 and Celf2-6, as well as splicing reg-
ulators Nova1-2 and Rbfox1-3. Prior work provides functional
evidence that fly orthologs of the ELAV-like induce neural-
specific 3′-UTR lengthening through competition with
CstF43,44,53–55, and that mammalian Elavl2-4 can also regulate
APA41,56. Moreover, Nova1-242 and Rbfox245 have been directly
implicated as regulators of APA in mouse and rat cells, respec-
tively. Although only Celf2 has been shown to regulate APA57,
evidence for the roles of CELF family proteins in this process
include: (i) enriched expression in neurons and later develop-
mental stages; (ii) direct interaction with RBFOX and ELAVL
family members; (iii) nuclear localization39; (iv) enriched binding
to the 3′-UTR terminus58; (v) interaction with U2 snRNP39,
which is known to promote distal isoform usage59; and (vi) roles
in splicing39,40. Conversely, we also detect relative induction of
Ptbp1 and Hnrnpf in cellular contexts experiencing 3′-UTR
shortening, which are also believed to compete with CstF-64 in
the blood47–49.
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Fig. 4 Identification of distinct gene lengthening patterns and genes responsible for overall data trends across embryonic ages. a Heatmap of mean
differences in 3′-UTR lengths for 5169 genes with significant differences in PAS usage across embryonic stages. Heatmap is column-centered and clustered
by Pearson correlation as a distance metric. b Schematic of IIR plot visualization using PAS counts for each of five embryonic stages. Vertical red lines along
the 3′-UTR indicate PASs that are significantly different between stages by the χ2 test (P < 0.05). c IIR plots for six genes among representative clusters
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Data 3 for a table of read counts associated with each PAS for each gene and embryonic stage.
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During the course of this work, we attempted an analysis to
characterize motifs enriched in the vicinity of differentially expressed
PASs. This analysis was largely inconclusive because it was highly
sensitive to certain parameters such as: (i) the length of the input
sequence window around each PAS, (ii) the threshold to consider a
PAS differentially expressed, and (iii) a lower threshold for a gene to
be considered sufficiently expressed. The most conclusive motif that
emerged from this analysis was the well-characterized AAUAAA
motif, with less robust support for a repetitive GU-rich element that
matched the CELF recognition element.

Given the exaggerated 3′-UTR shortening and lengthening we
observed in blood and neuronal cell types, respectively, it is
interesting to consider how these observations might give insight
into regulatory function in these tissues. In the blood, the bias
towards the selection of proximal PASs is partially caused by the
induction of CstF-6460,61, which is associated with the G0 to S

phase transition cell active in proliferating cells62. The levels of
CstF-64 and competing factors such as U1A63, PTB49, and
hnRNP F47,48 are thought to regulate the choice of low-affinity
PASs associated with proximal 3′-UTR isoforms64. These
mechanisms influence immunoglobulin (Ig) secretion in plasma
cells60,61,65 as well as isoform choice of FKBP1266 and NF-ATc67,
key transcription factors which function in T cells. These isoform
switching events enable plasma cells to perform their most fun-
damental function: secreting Ig68.

In neurons, it has been previously observed that APA guides
differential mRNA localization69,70, and that APA itself is directly
regulated by neural activity71 such as long-term potentiation72.
These findings open the possibility that APA might serve as an
important process in guiding mRNAs to axons and dendrites,
thereby modulating synaptic potential. One promising direction
for this work is to use our APA atlas, and those derived from
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other single-cell datasets73, to further dissect how differential
mRNA localization across neuronal subtypes might contribute to
their functional specialization.

We anticipate that the general computational framework that
we have developed herein will be broadly applicable toward
assessing the landscape of APA in existing and future single-cell
RNA-seq datasets from different organisms. Our characterization
of APA across genes, cell types, and developmental stages of a
mammalian organism will also serve as a resource to further
guide the discovery of new regulatory mechanisms that control
APA. Finally, it may help to dissect how these changes impact the
function of mRNA with respect to its cellular localization, half-
life, and translation in cell types throughout the body.

Methods
An integrated set of mouse 3′-UTRs. We established an integrated set of mouse
3′-UTR annotations for protein-coding genes in which each unique stop codon was
associated with a representative transcript with the longest annotated 3′-UTR9,
using the Gencode M25 “comprehensive” set33 as our initial annotations (Sup-
plementary Data 1). For each unique stop codon, we selected the longest 3′-UTR
from three additional resources: (i) RefSeq (March 2020 release)36, (ii) 3′-UTRs
with extreme lengthening23, using liftOver74 to remap the coordinates from mm9
to mm10, and (iii) bulk 3P-seq-based annotations derived from mouse muscle,
heart, liver, lung, kidney, brain, testes, and white adipose tissues as well as NIH 3T3
and mESC cell lines8. The choose_all_genes_for_TargetScan.pl Perl script in the
TargetScanTools Github35 was used to integrate these databases, allowing a 3P-seq
read to exist up to 5,400 nt (i.e., the 99th percentile of annotated 3′-UTR lengths)
downstream of a stop codon.

In certain scenarios, such as in the case of alternative splicing of the terminal
exon, a gene is potentially associated with many unique stop codons, each of which

Fig. 6 Evaluation of putative RNA-binding protein regulators of alternative polyadenylation. a Heatmap of relative gene expression levels, quantified as
log2(counts per million), for a set of 1576 RBPs across cell types derived from 38 t-SNE clusters. Heatmap is column-centered and clustered in both rows
and columns by Pearson correlation as a distance metric. b Relationship of changes in RBP expression between E13.5 vs. E9.5 relative to neuronal vs. other
cell types. Also listed are the Pearson (r) and Spearman (rho) correlations. c Expression levels of Celf1-6 across the five developmental stages. Expression is
quantified in counts per million (cpm) and shown on a log2 scale. All genes displayed significant differential expression across stages, with a Bonferroni-
corrected P < 0.001 as assessed by the χ2 test for homogeneity, using PAS-mapping read counts associated with the RBP of interest versus all other RBPs. d
Expression levels of genes highlighted in (b) in neuronal cell types relative to other cell types. Significant differences between the two groups were
assessed by a two-sided Wilcoxon rank-sum test, with P values adjusted for multiple hypothesis testing with a Bonferroni correction (*P < 0.01, **P < 10−4).
Exact P values for panels (c, d) are provided in Supplementary Table 1.
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is associated with its own 3′-UTR annotation. We, therefore, sought to avoid a bias
in which genes with many such transcript isoforms would be overrepresented in
the downstream results, and to avoid the possibility that PASs would be counted
redundantly in cases in which multiple different 3′-UTRs overlapped the same
genomic coordinates. We, therefore, carried forward a single transcript isoform
with the greatest number of 3′-UTR mapping reads (or a random top-ranked one
in the case of a tie) to represent each gene. To perform this counting, scRNA-seq
reads were intersected with our 3′-UTR annotation set using bedtools intersect
(-wa -wb -s)75.

An integrated set of mouse poly(A) sites. To generate our union PAS set, we
integrated three PAS annotation databases: Gencode M2533, PolyA_DB v320, and
PolyASite 2.021. First, PASs within ± 10 nt of another PAS within the same data-
base were collapsed by selecting the most downstream PAS. Next, the following
procedure was implemented to reduce redundancy between databases: (i) we col-
lected PASs from PolyASite 2.0, (ii) we added PASs from PolyA_DB v3 not
within ± 10 nt of the current PAS set, and (iii) we added PASs from Gencode M25
not within ± 10 nt of the current PAS set. This method of sequential addition led to
a total of 164,772 PASs in our union set; we provide the genomic coordinates and
corresponding read counts associated with this set (Supplementary Data 3 and 5).

Calculation of 3′-UTR lengths, relative length differences, and corresponding
visualizations. Reads were mapped to the mm10 genome and collected from
previous work31 (GEO ID: GSE119945). Reads were then filtered according to their
proximity to a known PAS. Associated motif analyses using DREME v5.0.576 and
lasso regression models77 demonstrated that these read filtering criterion improved
the quantitation of 3′-UTR isoforms. 3′-UTR length corresponding to a given read
(i.e., which remained after read filtering) was computed as the distance from the
stop codon to the read’s assigned PAS, minus the length of any intervening
intron(s). These 3′-UTR lengths were used to compute a “gene by cell” sparse
matrix of the mean length among all 3′-UTR isoforms, weighted by their respective
counts. For each gene, we then computed each cell’s deviation from the mean of 3′-
UTR lengths across cells, considering only nonmissing values. For heatmaps, these
deviation values were then averaged according to the labels assigned to each cell
(i.e., with respect to t-SNE cluster, UMAP trajectory, and/or developmental stage).
Cell labels were based upon those previously assigned31. When indicated in the
legend, in some instances the heatmaps were further centered by subtracting the
mean of the row or column. t-SNE plots were visualized using the hexbin (grid-
size= 500, vmin=−50, vmax= 50) function from pyplot, which averages values
from cells captured in local bins. UMAP plots were binned by splitting each of the
x, y, and z coordinates into 150 equally sized bins. For all of our analyses presented
in Figs. 2 and 3, we experimented with testing increasingly stringent minimal read
count thresholds to retain genes and/or cells in our sparse matrix, and achieved
highly robust results independent of the thresholds selected.

Gene-level isoform inclusion rate plots and corresponding statistics. For each
gene, we counted reads assigned to each PAS to build contingency tables of counts
for either (PAS by developmental stage) (Supplementary Data 3) or (PAS by cell
type) (Supplementary Data 5). We then computed statistical significance using the
χ2 test for homogeneity as computed by the chisquare function in scipy, either with
respect to the entire gene (Supplementary Data 2 and 4) or with respect to each
PAS (axis= none or axis= 1, respectively). In both cases, we provided a matrix of
expected counts, based on the joint probability of each cell multiplied with the total
counts in the matrix. For the gene-level χ2 test, we further derived a
Benjamini–Hochberg (BH) based q value to account for the FDR. Considering the
read counts associated with each PAS position, isoform inclusion rates were
visualized in the same manner as previous work, which allude to this plotting style
as the affected isoform ratio (AIR) plot8,9,35. Much like a survival curve, the IIR
quantifies the proportion of 3′-UTR isoforms that include a given nucleotide
position.

Search for putative RBP regulators. To evaluate changes in gene expression
associated with RBPs, we first computed gene expression levels for all protein-
coding genes. Toward this goal, we summed the counts associated with PAS-
mapping reads for all unique PASs (i.e., as assessed by chromosomal coordinate)
across all transcripts (i.e., including those with alternative last exons) corre-
sponding to each gene, using our count tables partitioned either by developmental
stage (Supplementary Data 3) or by cell type (Supplementary Data 5). Counts were
then normalized by the stage or cell type into counts per million (cpm) (Supple-
mentary Data 6 and 7) and then log2-transformed. Genes were annotated as an
RBP if their gene name matched one of 1882 mouse genes annotated as a putative
RBP38. For the subset of 1576 RBPs meeting an expression threshold of 2 cpm in at
least one of the samples tested, we computed the fold change of each gene across
time as [log2(cpm at E13.5) – log2(cpm at E9.5)] and in neurons relative to other
cell types as [mean log2(cpm in neurons) –mean log2(cpm in other cell types)]
(Supplementary Data 8), where neurons are defined as the cell types in the cluster
shown in Fig. 6a.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The analyses presented in this study are based on publicly available data,
including: RefSeq (March 2020 release)36, 3′-UTRs with extreme lengthening23, Gencode
M2533, PolyA_DB v320, PolyASite 2.021, bulk 3P-seq data8, scRNA-seq data
(GSE119945)31, and a list of mouse RBPs38.

Code availability
The computational pipeline to reproduce the core results of this work is provided under
the MIT open-access license at the following link: https://github.com/serenolopezdarwin/
apanalysis.
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