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Single-cell, whole-embryo phenotyping of 
mammalian developmental disorders
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Saranya Balachandran3, Oana V. Amarie5, Martin Hrabě de Angelis5,6,7, 
Rose Yinghan Behncke8,9, Wing-Lee Chan8,9, Alexandra Despang4,9, Diane E. Dickel10, 
Madeleine Duran1, Annette Feuchtinger11, Helmut Fuchs5, Valerie Gailus-Durner5, 
Natja Haag12, Rene Hägerling4,8,9, Nils Hansmeier4,8,9, Friederike Hennig4, Cooper Marshall1,13, 
Sudha Rajderkar10, Alessa Ringel4,8, Michael Robson4, Lauren M. Saunders1, 
Patricia da Silva-Buttkus5, Nadine Spielmann5, Sanjay R. Srivatsan1, Sascha Ulferts8,9, 
Lars Wittler4, Yiwen Zhu7, Vera M. Kalscheuer4, Daniel M. Ibrahim4,9, Ingo Kurth12, 
Uwe Kornak14, Axel Visel10, Len A. Pennacchio10, David R. Beier13,15,16, Cole Trapnell1,13,17, 
Junyue Cao18 ✉, Jay Shendure1,13,17,19 ✉ & Malte Spielmann3,4,20 ✉

Mouse models are a critical tool for studying human diseases, particularly developmental  
disorders1. However, conventional approaches for phenotyping may fail to detect 
subtle defects throughout the developing mouse2. Here we set out to establish single- 
cell RNA sequencing of the whole embryo as a scalable platform for the systematic 
phenotyping of mouse genetic models. We applied combinatorial indexing-based 
single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type 
genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. 
The 22 mutants represent a range of anticipated phenotypic severities, from established 
multisystem disorders to deletions of individual regulatory regions4,5. We developed 
and applied several analytical frameworks for detecting differences in composition 
and/or gene expression across 52 cell types or trajectories. Some mutants exhibit 
changes in dozens of trajectories whereas others exhibit changes in only a few cell 
types. We also identify differences between widely used wild-type strains, compare 
phenotyping of gain- versus loss-of-function mutants and characterize deletions of 
topological associating domain boundaries. Notably, some changes are shared 
among mutants, suggesting that developmental pleiotropy might be ‘decomposable’ 
through further scaling of this approach. Overall, our findings show how single-cell 
profiling of whole embryos can enable the systematic molecular and cellular phenotypic 
characterization of mouse mutants with unprecedented breadth and resolution.

For more than 100 years, the laboratory mouse (Mus musculus) has 
served as the quintessential animal model for studying human diseases1. 
For developmental disorders in particular, mice have been transforma-
tive, as a mammalian system that is nearly ideal for genetic analysis and 
in which the embryo is readily accessible6.

At its inception, mouse genetics relied on spontaneous or induced 
mutations resulting in visible physical defects that could then be 
mapped. However, gene-targeting techniques later paved the way 

for ‘reverse genetics’ (that is, analysing the phenotypic effects of 
intentionally engineered mutations)6. Through systematic efforts 
such as the International Knockout Mouse Consortium, knockout 
(KO) models are now available for thousands of genes7. Furthermore, 
with genome editing8,9, it is increasingly practical to delete individual  
regulatory elements10.

Phenotyping has also grown more sophisticated. Conventional inves-
tigations of developmental syndromes typically focus on one organ at a 
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specific stage (for example, combining expression analyses, histology 
and imaging to investigate a visible malformation)1. The Mouse Clinic, 
involving a battery of standardized tests, reflects a more systematic 
approach11, but phenotypes detected through such tests (for example, 
behavioural and electrophysiological) may require years of additional 
work to link them to molecular and cellular correlates. Furthermore, 
it is often the case that an intentionally engineered mutation results 
in no detectable abnormality12. In such instances, it remains unknown 
whether there is truly no phenotype, or whether the methods used are 
simply insufficiently sensitive. In sum, phenotyping has become ‘rate 
limiting’ in mouse genetics.

Single-cell molecular profiling offers a potential path to overcome 
such barriers. As a first step, we and others have applied single-cell RNA 
sequencing (scRNA-seq) to profile wild-type mouse development at the 
scale of the whole embryo3,13–18. Applying scRNA-seq to mouse mutants, 
several groups have successfully unravelled how specific mutations 
affect transcriptional networks and lead to altered cell fate decisions 
in individual organs19. However, there is still no clear framework for 
analysing such data at the whole-embryo scale.

scRNA-seq of 101 mouse embryos
We set out to establish whole-embryo scRNA-seq as a scalable frame-
work for the systematic molecular and cellular phenotyping of mouse 
genetic models. We collected 103 mouse embryos, including 22 differ-
ent mutants and 4 wild-type strains at embryonic day (E)13.5, and gener-
ally 4 replicates per strain (Fig. 1a). Mutants were chosen to represent a 
spectrum of phenotypic severity ranging from established pleiotropic 
disorders to KOs of individual regulatory elements.

We grouped mutants into four categories (Fig. 1a and Supple-
mentary Table 1). The first category, pleiotropic mutants, consisted 
of embryos with KOs of developmental genes expressed in several 
organs (Ttc21b KO, Carm1 KO and Gli2 KO), and two mutations of the 
Sox9 regulatory landscape suspected to have pleiotropic effects (Sox9 
topological associating domain (TAD) boundary knock-in; Sox9 reg-
ulatory inversion (INV))5,20–22. The second category, developmental 
disorder mutants, consisted of embryos intended to model specific 
human diseases (Scn11a gain of function (GOF), Ror2 knock-in, Gorab 
KO and Cdkl5 −/ Y (hemizygous))23–25. The third category consisted 
of embryos with mutations of loci associated with human disease 
(Scn10a/Scn11a double KO, Atp6v0a2 KO, Atp6v0a2R755Q and Fat1 TAD 
KO)26,27. The fourth category consisted of embryos with prospective 
deletions of cis-regulatory elements, including of TAD boundaries 
near developmental transcription factors (Smad3, Tbx5, Neurog2, 
Sim1, Smad7, Dmrt1, Tbx3 and Twist1)4. As a positive control, this 
fourth category includes a ZRS distal enhancer (zone of polarizing 
activity regulatory sequence) KO mutant, which specifically fails to 
develop distal limb structures28. Except for Scn11a GOF, all mutants  
were homozygous.

To validate staging, we leveraged our previous mouse organogen-
esis cell atlas (MOCA), which spans E9.5 to E13.5 (ref. 3). After doublet 
filtering, we profiled 1,671,245 nuclei (16,226 ± 9,289 per embryo; 
64,279 ± 18,530 per strain; median unique molecular identifier count: 
843 per cell; median genes detected: 534; 75% duplication rate). Below 
we refer to this dataset as the mouse mutant cell atlas (MMCA).

Applying principal component analysis (PCA) to ‘pseudobulk’ pro-
files of the embryos resulted in two groups corresponding to genetic 
background (Fig. 1b), with FVB embryos clustering separately from 
C57BL/6J, G4 and BALB/c embryos. However, embryos corresponding 
to individual mutants did not cluster separately, suggesting that none 
was affected with severe, global aberrations. A single outlier (embryo 
104) was aberrant with respect to cell recovery (n = 1,047) and appear-
ance (Extended Data Fig. 1a).

To validate staging, we leveraged our previous mouse organogenesis 
cell atlas (MOCA), which spans E9.5 to E13.5 (ref. 3). PCA of pseudobulk 

profiles of 61 wild-type embryos from MOCA resulted in a first compo-
nent (principal component 1 (PC1)) strongly correlated with develop-
mental age (Fig. 1c). Projecting pseudobulk profiles of the 103 MMCA 
embryos to this embedding resulted in most MMCA embryos clustering 
with E13.5 MOCA embryos along PC1, consistent with accurate staging. 
However, five MMCA embryos seemed closer to E11.5 or E12.5 MOCA 
embryos. Four of these were retained as their delay might be explained 
by their mutant genotype, whereas one wild-type embryo (C57BL/6; 
embryo 41) was designated a second outlier. We removed cells from 
the two outlier embryos (embryos 104 and 41) as well as cells with high 
proportions of reads mapping to the mitochondrial genome (>10%) 
or ribosomal genes (>5%). This left 1,627,857 cells, derived from 101 
embryos (Fig. 1d).

To facilitate data integration, we projected cells from all genotypes 
to a wild-type-derived ‘reference embedding’ (Methods and Extended 
Data Fig. 1b,c). Altogether, we identified 13 major trajectories, 8 of which 
were further stratified into 59 sub-trajectories (Fig. 1e, Extended Data 
Fig. 2a and Supplementary Table 2), generally covering the expected 
cell trajectories at this stage of development. These were also generally 
consistent with our annotations of MOCA, albeit with some corrections 
as described elsewhere17,29. Greater granularity for some cell types is 
probably a consequence of the deeper sampling of E13.5 cells in these 
new data (Extended Data Fig. 2b).

Mutant-specific variation in cell-type composition
In analysing these data, we pursued three approaches: quantification 
of gross differences in cell-type composition (this section); investiga-
tion of more subtle differences in the distribution of cell states within 
annotated trajectories and sub-trajectories; and analysis of the extent 
to which phenotypic features are shared between mutants.

To systematically assess cell-type compositional differences, we 
first examined the proportions of cells assigned to each of 13 major 
trajectories. These proportions were mostly consistent across geno-
types (Extended Data Fig. 3a), but some mutants exhibited substantial 
differences. For example, compared to wild-type C57BL/6, the propor-
tion of cells in the neural tube trajectory decreased from 37.3% to 33.7% 
and 32.6% in the Gli2-KO and Ttc21b-KO strains, respectively, and the 
proportion of cells in the mesenchymal trajectory decreased from 44.1% 
to 37.1% in the Gorab-KO strain. These changes are broadly consistent 
with the gross phenotypes associated with these mutations20,25,30, but 
are subject to the caveat of substantial interindividual heterogeneity 
(Extended Data Fig. 3b). We also observe differences in major-trajectory 
composition between the four wild-type strains. For example, wild-type 
FVB and G4 mice consistently had fewer mesenchymal and more neu-
ral tube cells than wild-type BALB/c and C57BL/6 embryos (Extended 
Data Fig. 3c). We further checked for technical effects (for example, 
experimental batch) that might confound cell-type recovery rates 
(Extended Data Fig. 4a–c).

We next sought to investigate compositional differences at the 
level of sub-trajectories. For each combination of background and 
sub-trajectory, we carried out regression to identify mutations that 
were nominally predictive of the proportion of cells falling in that 
sub-trajectory (uncorrected P value < 0.05; beta-binomial regression; 
Methods). Across 22 mutants, this analysis highlighted 300 nominally 
significant changes (Fig. 2a and Supplementary Table 3). Owing to the 
limited number of replicate embryos per strain, our power to defini-
tively call such changes is limited, particularly in the smaller trajectories 
(Methods and Extended Data Fig. 4d). Nevertheless, two patterns are 
noteworthy, as follows.

First, Atp6v0a2 KO and Atp6v0a2R755Q, distinct mutants of the same 
gene26, exhibit highly consistent patterns of change, both with respect 
to which sub-trajectories are nominally significant as well as the direc-
tion and magnitude of changes. The consistency supports the validity 
of this analytical approach.



Nature | www.nature.com | 3

Second, mutants varied considerably with respect to the number 
of sub-trajectories nominally significant for compositional differ-
ences. At the higher extreme, 30 of 54 sub-trajectories were nomi-
nally altered by the Sox9 regulatory INV mutation, consistent with the 
wide-ranging roles of SOX9 in development31,32. At the lower extreme, 
TAD boundary KOs exhibited very few changes, consistent with the 
paucity of gross phenotypes in such mutants12. Nonetheless, all TAD 
boundary KOs did show some nominal changes, including specific 
ones (for example, the lung epithelial and liver hepatocyte trajectories 

were specifically decreased in Dmrt1 and Tbx3 TAD boundary KOs,  
respectively).

There were a few extreme examples (for example, in which a 
sub-trajectory seemed to be fully lost). For example, Ttc21b, which 
encodes a cilial protein and whose KO is associated with brain, bone 
and eye phenotypes20,33, exhibited a marked reduction in retinal 
neuron (log2[ratio] = −7.16; Fig. 2b), lens (log2[ratio] = −2.40) and 
retina epithelium (log2[ratio] = −1.65) trajectories (Extended Data 
Fig. 5a–c). Validations through haematoxylin and eosin staining 
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support these patterns, as the homozygous Ttc21b mutant exhibits a 
visible collapse in structures that are detectable within the wild-type 
eye at E13.5. Specifically, the retinal neurons, lens and optic nerve 

were missing in the homozygous mutant (Fig. 2c). The retinal epi-
thelium was delocalized and reduced as well (Fig. 2c and Extended  
Data Fig. 5c).
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We next examined the positive control, the ZRS limb enhancer KO, 
a well-studied mutant that shows a loss of the distal limb structure at 
birth28. Eight sub-trajectories were nominally altered in this mutant, 
mostly mesenchymal. Although the reduction in limb mesenchymal 
cells was modest (24% or log2[ratio] = −0.39), co-embedding of limb 
mesenchyme cells from ZRS limb enhancer KO and wild-type FVB 
embryos identified a subpopulation that specifically expressed mark-
ers of the distal mesenchyme of the early embryonic limb bud, such as 
Hoxa13 and Hoxd13, that was markedly affected (Fig. 2d,e and Extended 
Data Fig. 5d). Such heterogeneity was not observed for the seven other 
nominally altered sub-trajectories (Extended Data Fig. 5e), consistent 
with the specificity of this phenotype.

Transcriptional heterogeneity within cell types
We next sought to develop a more sensitive approach for detecting 
deviations in transcriptional programs within cell-type trajectories. For 
this, we developed the local cellular heuristic neighbourhood enrich-
ment specificity score (lochNESS), a score calculated on the basis of 
the ‘neighbourhood’ of each cell in a sub-trajectory co-embedding of 
a given mutant (all replicates) versus a pooled wild type (all replicates 
of all backgrounds). Briefly, lochNESS takes aligned PC features of 
each sub-trajectory and finds k nearest neighbours for each cell from 
other embryos. For each mutant cell, we compute the fold change of 

the observed versus expected number of mutant cells in its neighbour-
hood (Fig. 3a and Methods; similar methods developed independently 
in ref. 34).

Visualization of lochNESS in the embedded space highlights areas 
with enrichment or depletion of mutant cells. For example, returning to 
the ZRS limb enhancer KO embryos, we observe markedly low lochNESS 
in the distal mesenchyme of the early embryonic limb bud (Figs. 2d  
and 3b). This highlights the value of lochNESS, as within a sub-trajectory 
(limb mesenchyme), an effect is both detected and assigned to a subset 
of cells in a label-agnostic fashion.

Globally, the distribution of lochNESS is unremarkable for some 
mutants (for example, most TAD boundary KOs) but aberrant for oth-
ers (for example, pleiotropic mutants such as Sox9 regulatory INV; 
Extended Data Fig. 6a). After carrying out additional quality control 
checks (Methods and Extended Data Fig. 6b–d), we examined lochNESS 
for each mutant in each sub-trajectory. Consistent with earlier analyses, 
our data show low lochNESS for the retinal neuron sub-trajectory in 
Ttc21b-KO mice (Fig. 3c and Extended Data Fig. 6e). We also observe a 
strong shift towards low lochNESS for the floor plate sub-trajectory in 
Gli2-KO mice, and a subtle change for the roof plate trajectory, which is 
forming opposite to the floor plate along the dorsal–ventral axis of the 
developing neural tube35 (Fig. 3c and Extended Data Fig. 6e).

To explore this further, we extracted and reanalysed cells correspond-
ing to the floor plate and roof plate (Extended Data Fig. 7a). Within the 
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floor plate, Gli2-KO cells consistently exhibited low lochNESS (Fig. 3d). 
However, there were only a handful of differentially expressed genes 
between the wild type and the mutant, and no significantly enriched 
pathways. For example, genes such as Robo1 and Slit1, involved in 
neuronal axon guidance, are specifically expressed in the floor plate 
relative to the roof plate (Fig. 3e), but are not differentially expressed 
between wild-type and Gli2-KO cells of the floor plate. Alternatively, 
our failure to detect substantial differential expression may be due 
to power, as there were fewer floor plate cells in the Gli2 KO (about 
60% reduction). Overall, these observations are consistent with the 
established role of Gli2 in floor plate induction, its role as an activator 
of SHH in dorso-ventral patterning of the neural tube and the previous 
demonstration that Gli2 KOs fail to properly induce a floor plate35,36.

Less expectedly, we identified two subpopulations of roof-plate- 
derivative cell types, one depleted and the other enriched in Gli2-KO 
embryos (Fig. 3d and Extended Data Fig. 7a–c). To annotate these sub-
populations, we examined genes whose expression was predicted by 
lochNESS (Methods). The mutant-enriched group of roof plate cells 
was marked by cilial genes and Ttr, a marker for the choroid plexus 
(ChP), whereas the mutant-depleted group was marked by WNT-related 
genes (for example, Rspo1/2/3 and Wnt3a/8b/9a) indicating it to be 
a region close to the ChP of the lateral ventricle, namely the corti-
cal hem (Fig. 3e, Extended Data Fig. 7d and Supplementary Tables 4 
and 5). We also mapped the three clusters shown in Extended Data 
Fig. 7a to spatial transcriptomic data from E13.5 mouse embryos37 
(Extended Data Fig. 7e). Supporting our annotations, cluster 1 mapped 
to the floor of the neural tube, cluster 2 next to the lateral ventricle 
ChP, and cluster 3 to the ChP (both in the lateral (anterior) and fourth 
(posterior) ventricles). We then examined marker genes that further 
separate lateral ventricle and fourth ventricle ChP and found that in 
addition to the roof plate marker Lmx1a, cluster 3 expresses the fourth 
ventricle marker Meis1 and cluster 2 expresses the lateral ventricle 
markers Otx1 and Emx2 (Extended Data Fig. 7f and Supplementary  
Table 4).

To experimentally validate these observations, we examined devel-
opmental progression of the neural tube and brain in E13.5 Gli2-KO 
mutant and wild-type embryos. In coronal sections of the mutant, we 
observed severe developmental defects including deformed forebrain 
lobes and delayed neural tube development (Extended Data Fig. 8a). 
Immunofluorescence imaging of Pax6 expression revealed a severely 
disturbed shape of the neural tube, confirming the well-described 
‘dorsalization’ phenotype of the neural tube (Extended Data Fig. 8b), 
and consistent with marked reductions in the proportion of floor plate 
cells in the Gli2-KO mutant (Fig. 3d). Turning to the less expected obser-
vation of increased ChP, we found that the lateral ventricle as well as 
the fourth ventricle exhibited a disturbed pattern of staining of Ttr 
expression. Whereas the wild type shows inner and outer Ttr signal 
within the single cell layer, the mutant exhibited a ‘double DAPI’ layer, 
indicating a disordered tissue organization (Fig. 3f and Extended Data 
Fig. 8c,d). Adjusting for the overall smaller size of Gli2-KO mutants 
at E13.5, we quantified cells positive for Ttr expression in the lateral 
and fourth ventricle, and found a proportional increase in the mutant 
relative to the wild type (Supplementary Table 6), again consistent 
with the marked increase in the proportion of ChP cells in this mutant 
(Fig. 3d). In summary, we could confirm both the expected reduction 
in floor plate and the unexpected increase in roof-plate-derived ChP 
in the mutant. Of note, the relatively subtle and opposing effects on 
these roof plate subpopulations were missed by our original analysis 
of cell-type proportions, and uncovered only by the granularity of 
lochNESS.

LochNESS distributions can be systematically screened to iden-
tify sub-trajectories exhibiting mutant-specific shifts. For example, 
although all TAD boundary KO mutants have similarly unremarkable 
global lochNESS distributions, when we plot these distributions by 
sub-trajectory, a handful of shifted distributions are evident (Extended 

Data Fig. 9a,b). For example, multiple epithelial sub-trajectories, includ-
ing pre-epidermal keratinocyte, epidermis, branchial arch and lung 
epithelial trajectories, are most shifted in Tbx3 TAD boundary KO cells, 
with further analyses preliminarily supporting a role for Tbx3 in epi-
dermal and lung development38 (Methods, Extended Data Fig. 9c,d 
and Supplementary Table 7).

Mutant-specific and mutant-shared effects
Pleiotropy, wherein a single gene influences multiple, unrelated traits, 
is a pervasive phenomenon in developmental genetics, and yet remains 
poorly understood39. Although here we have ‘whole-embryo’ molecular 
profiling of just 22 mutants, we sought to investigate whether we could 
distinguish between mutant-specific and mutant-shared effects within 
each major trajectory. In brief, within a co-embedding of cells from all 
embryos from a given background, we computed k nearest neighbours 
as in Fig. 3a, and then calculated the observed versus expected ratio 
of each genotype among a cell’s k nearest neighbours. The ‘similarity 
score’ between one genotype versus all others is defined as the mean of 
these ratios across cells of the genotype (Methods). To assess whether 
any observed similarities or dissimilarities are robust, we can also cal-
culate similarity scores between individual embryos. For example, for 
the mesenchymal trajectory of C57BL/6 mutants, similarity scores are 
generally higher for pairwise comparisons of individuals with the same 
genotype (Fig. 4a and Extended Data Fig. 10a–c). Pairs of individuals 
with the Scn11a-GOF mutation exhibited the most extreme similarity 
scores, consistent with our earlier observation that they clustered with 
E12.5 rather than E13.5 embryos (Fig. 1c). Following further analysis, we 
believe that the most parsimonious explanation is incorrect staging of 
these litters, rather than mutation-specific, global developmental delay 
(Extended Data Fig. 10d–g and Supplementary Note 1).

We also observed that the similarity scores between three mutants 
(Atp6v0a2 KO, Atp6v0a2R755Q and Gorab KO) were consistent with shared 
effects, in the mesenchymal, epithelial, endothelial, hepatocyte and 
neural crest (peripheral nervous system glia) trajectories in particular; 
in other major trajectories, such as neural tube and haematopoiesis, 
the Atp6v0a2 KO and Atp6v0a2R755Q exhibited high similarity scores 
with one another, but not with the Gorab KO (Fig. 4a and Extended Data 
Fig. 10a,c,f). In human patients, mutations in ATP6V0A2 and GORAB 
cause overlapping connective tissue disorders, which is reflected in the 
misregulation of the mesenchymal trajectory of Atp6v0a2 and Gorab 
mutants25,26. However, only the ATP6V0A2-related disorder exhibits 
a prominent central nervous system phenotype, consistent with the 
changes in the neural tube trajectory seen only in Atp6v0a2 mutants 
(Extended Data Fig. 10a,c,f).

To further explore phenotypic sharing between these mutants, we 
co-embedded cells of the lateral plate and intermediate mesoderm 
sub-trajectory from C57BL/6 strains. We resolved the identity of most 
subclusters using marker genes and spatial mapping, identifying mul-
tiple subsets for which Atp6v0a2-KO, Atp6v0a2R755Q and Gorab-KO mice 
are similarly distributed compared to other C57BL/6 genotypes (Fig. 4b 
and Extended Data Fig. 11). Some subsets are enriched for cells from 
these mutants (for example, proepicardium, hepatic mesenchyme 
and lung mesenchyme) whereas others are depleted (for example, 
gastrointestinal smooth muscle; Fig. 4c,d and Supplementary Table 4). 
Although individually subtle, the consistent shifts in cell-type propor-
tions between the two Atp6v0a2- and Gorab-KO mutants across these 
subsets of mesenchyme derived from lateral plate mesoderm presum-
ably underlie their high mesenchymal similarity scores (Fig. 4c).

Altogether, these analyses illustrate how the joint analysis of mutants 
subjected to whole-embryo scRNA-seq can reveal sharing of molecular 
and cellular phenotypes. This includes global similarity (Atp6v0a2 KO 
versus Atp6v0a2R755Q) as well as instances in which specific aspects 
of phenotypes are shared between previously unrelated mutants 
(Atp6v0a2 mutants versus Gorab KO).
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Mesenchymal stalling in a Sox9 regulatory mutant
About half of the mutants profiled here model disruptions of regula-
tory, rather than coding, sequences. Among these, the Sox9 regula-
tory INV mutant stands out in having a markedly shifted lochNESS 
distribution, particularly in mesenchyme (Fig. 5a and Extended Data 
Fig. 6a). Sox9 encodes a pleiotropic transcription factor crucial for 
development of the skeleton, the brain, sex determination and other 
systems, orchestrated by a complex regulatory landscape40–42. This 
particular mutant features an inversion of a 1-megabase upstream 
region bearing several distal enhancers and a TAD boundary, essen-
tially relocating these elements into a TAD with Kcnj2, which encodes a 
potassium channel5 (Fig. 5b). Like the Sox9 KO, the homozygous Sox9 
regulatory INV is perinatally lethal, with extensive skeletal pheno-
types including digit malformation, a cleft palate, bowing of bones and 
delayed ossification. In addition to the loss of 50% of Sox9 expression, 
the inversion causes pronounced misexpression of Kcnj2 in the digit 
anlagen in a wild-type Sox9 pattern5. However, the extent to which 
Kcnj2 and Sox9 are misexpressed elsewhere, as well as the molecular 
and cellular correlates of the widespread skeletal phenotype, have yet 
to be deeply investigated.

At the level of mesenchymal sub-trajectories, shifts in the lochNESS 
distribution for Sox9 regulatory INV were consistently observed, but 
limb mesenchyme and connective tissue were particularly enriched for 
cells with extremely high lochNESS (Fig. 5a, right). Notably, two of three 
major enhancers (E250 and E195) known to drive Sox9-mediated chon-
drogenesis in mesenchymal stem cells are located within the inverted 
region40 (Fig. 5b). Cell-type composition analysis (Fig. 2a) showed that 
Sox9 regulatory INV mutants harbour considerably larger numbers 
of cells classified as limb mesenchyme, at the expense of osteoblasts, 
lateral plate and intermediate mesoderm, chondrocytes and connec-
tive tissue trajectories. This shift can also be seen in a uniform manifold 
approximation and projection (UMAP) embedding (Fig. 5c), a topic we 
revisit further below.

These changes in cell-type composition were accompanied by 
reduced expression of Sox9 and increased expression of Kcnj2 in 
bone (aggregate of chondrocyte, osteoblast and limb mesenchyme; 
Extended Data Fig. 12a), although the number of cells expressing Kcnj2 
was generally low. This suggests that the Sox9 regulatory inversion is 
resulting in increased Kcnj2 expression (through Sox9 enhancer adop-
tion) and Sox9 reduction (through boundary repositioning) not only 
in the digit anlagen, but in skeletal mesenchyme more generally. To 
validate this, we carried out RNA in situ hybridization (RNAscope) on 
sections of developing bones of the rib cage at E13.5, comparing a het-
erozygous Sox9 regulatory INV mouse with a wild-type littermate. Con-
sistent with our scRNA-seq data derived from homozygous mutants, 
our data show a Sox9-patterned increase in Kcnj2 levels, together with 
losses in Sox9 expression, in the developing bone (Fig. 5d and Extended 
Data Fig. 12b).

As the inverted Sox9 regulatory region also hosts multiple enhancers 
active in other tissues (for example, E161 in lung and E239 in cerebral 
cortex)40, we wondered whether these patterns were also seen in other 
tissues. Indeed, both scRNA-seq and RNAscope quantification show 
increased Kcnj2 levels in all other tissues examined. Whereas reductions 
in Sox9 expression, clear in bone, were not observed in most other tis-
sues by scRNA-seq, RNAscope showed Sox9 reductions in telencephalon 
and lung as well (Extended Data Fig. 12a,b). Taken together, these data 
suggest marked changes in mesenchyme due to reduced Sox9, together 
with broader increases in Kcnj2 expression. As expected on the basis 
of the role of Sox9 in chondrogenesis, hallmark pathways related to 
chondrocyte proliferation and differentiation43–46 were downregulated; 
less expectedly, several immune-related pathways were upregulated 
(Extended Data Fig. 12c).

To explore the apparent accumulation of limb mesenchyme in the 
Sox9 regulatory INV (Fig. 5c and Extended Data Fig. 12d) in more detail, 
we reanalysed mutant and wild-type cells from the limb mesenchyme 
sub-trajectory, which revealed subpopulations of condensing mesen-
chyme, perichondrium and undifferentiated mesenchyme (Extended 
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Data Fig. 12e,f). RNA velocity analyses suggested that most limb mes-
enchyme ‘accumulation’ in mutant embryos is due to cells that are 
delayed or stalled in an undifferentiated or stem-like state (Fig. 5c,e 
and Extended Data Fig. 12e). This accumulation is even more appar-
ent in integrated views of the limb mesenchyme sub-trajectory, for 
which we observe branches that are highly enriched for Sox9 regulatory 
INV mutant cells, within undifferentiated mesenchyme (Fig. 5e and 
Extended Data Fig. 12g,h).

To investigate these branches further, we subclustered undiffer-
entiated mesenchyme cells from the mutant and wild type (Fig. 5f,g). 
Notably, the most differentially expressed genes in ‘branch 2’ were 
largely neuronal (for example, several neurexins and neuregu-
lin 3), an observation supported by gene set enrichment analysis 
(Extended Data Fig. 12i,j). A cellular composition analysis revealed 
that these neuronal-like cells were not restricted to the Sox9 regula-
tory INV mutant, but also found in wild-type embryos, albeit much 
less frequently (Extended Data Fig. 12g,h). To validate this unexpected 
‘neural-like’ branch of mesenchymal cells as well as to assess their ana-
tomical distribution, we mapped these cells to spatial transcriptomic 
data from E13.5 mouse embryos37. Strikingly, this analysis placed 

branch 2 cells along the neural tube and the brain regions (Extended 
Data Fig. 13a). To address concerns that artefacts might arise from 
mapping single-cell data onto non-single-cell spatial maps, we also 
integrated our data with sci-space47 spatial transcriptomic data (E14.5), 
as these retain single-nucleus resolution. The results are consistent, in 
that branch 2 mesenchymal cells are enriched in brain regions, branch 
0 cells are enriched in limb bud regions, and branch 1 and 3 cells are 
diffusely distributed but largely excluded from brain regions (Extended 
Data Fig. 13b).

Taken together, these analyses support the validity of this neural-like 
subset of mesenchyme (present in the wild type and increased in Sox9 
regulatory INV mutants). The observation is consistent with the reports 
that mesenchymal stem cells can be differentiated to neuronal states 
in vitro48.

Discussion
Here we set out to establish whole-embryo scRNA-seq as a new para-
digm for the systematic, scalable phenotyping of mouse developmental  
mutants. On data obtained for 22 mutants in a single experiment,  
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in the mesenchymal trajectory (left) and the Sox9 regulatory INV mutant in 
mesenchymal sub-trajectories (right). b, Model of the Sox9 regulatory INV 
mutation depicting ectopic Kcnj2 regulation through enhancer adoption.  
c, RNA velocity of mesenchymal G4 wild-type and Sox9 regulatory INV cells 
coloured by sub-trajectories (top) or genotype (bottom). d, Sox9 regulatory 

INV heterozygous mutant and littermate wild-type RNAscope images (red: 
Kcnj2; green: Sox9), with insets below highlighting a region corresponding to 
developing bone (area outlined with white dots line). Scale bars, 500 μm. e, RNA 
velocity of G4 wild-type and Sox9 regulatory INV cells in the limb mesenchymal 
sub-trajectory labelled by annotation (top) or genotype (bottom). f, The same 
as in e, but coloured by branch number. g, Dot plot of the top differentially 
expressed genes in the four branches shown in f.
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we developed analytical approaches to identify deviations in cell-type 
composition, subtle differences in gene expression within cell types 
(lochNESS), and sharing of sub-phenotypes between mutants (similar-
ity scores). Overall, the results are encouraging, and show how system-
atic, outcome-agnostic computational analyses of data obtained at the 
whole-embryo scale may in some cases reveal molecular and cellular 
phenotypes that are missed by conventional phenotyping.

We emphasize that the concurrent analysis of many mutants proved 
essential to the contextualization of particular observations (that is, to 
understand how specific or nonspecific any apparent deviation really 
was) against a background of dozens of genotypes and more than 100 
embryos. This also enabled us to discover shared aspects of phenotypes 
between previously unrelated genotypes (for example, between Gorab 
and Atp6v0a2 mutants). Looking forward, profiling of additional mouse 
mutants might enable the further ‘decomposition’ of developmental 
pleiotropy, a poorly understood phenomenon, into ‘basis vectors’.

The diverse mutants analysed yielded a variety of results that speak 
to the utility of whole-embryo scRNA-seq for phenotyping. For exam-
ple, an abnormal eye phenotype in Ttc21b mutants was previously 
described, but considered probably to be secondary to a more general 
craniofacial defect20,33. The scRNA-seq analysis of E13.5 Ttc21b mutants 
demonstrated that multiple retinal cell trajectories were essentially 
absent. Detailed histological analysis confirmed this, suggesting that 
the eye abnormality is probably not a secondary effect, but rather that 
the overactive SHH signalling has a primary effect on retinal develop-
ment in this mutant.

The utility of pursuing whole-embryo scRNA-seq was also demon-
strated by an unexpected finding of both a depleted and an enriched 
cell population of roof plate cell derivatives in the Gli2-KO mutant. The 
‘dorsalization’ of the neural tube in the absence of SHH signalling is 
well described20,35,36 and was confirmed in our histological analysis of 
this line (Extended Data Fig. 8). However, there have been no described 
changes in the roof plate or its derivatives so far in Gli2-KO mice36. By 
contrast, whole-embryo scRNA-seq uncovered that derivatives of the 
roof plate depict changes in composition (a primary finding) and tissue 
development (a finding based on secondary validation) in the mutant, 
illustrating how this approach can potentially yield new insight into 
even well-studied developmental pathways. However, owing to our 
dataset capturing only one time point, whether Gli2 misexpression 
causes the structural change directly in the derivative tissue or earlier 
during roof plate formation remains elusive.

Our MMCA has limitations. First, we profiled only four replicates per 
mutant at a single developmental time point. On the basis of a simula-
tion analysis of the analytical approach that considers only cell propor-
tions, four replicates of each mutant is probably sufficient to detect 
modest changes in abundant cell types (for example, a 10% change for 
cell types at 10% abundance) but only large changes in rarer cell types 
(for example, a 25% change in cell types at 1% abundance; Extended Data 
Fig. 4b). As such, to detect more subtle changes in model organisms 
such as mice for which very large numbers of replicates are not feasible, 
more sophisticated strategies such as lochNESS, which is not based on 
counts of cell types but rather directly considers the distribution of 
cells derived from different genotypes in a complex embedding, may 
be essential. It is important to note that our cell composition analysis, 
which includes both wild-type and mutant cells from the same strain to 
generate a pooled reference, assumes that the cell-type proportions of 
non-wild-type genotypes are roughly consistent, at least on the whole, 
with those of wild-type cells. This assumption may be more problematic 
in studies of biologically related mutants. Of note, in concurrently pub-
lished studies in this issue, a similar approach is taken for genetic and 
environmental perturbations in zebrafish (ref. 49), such that dozens to 
hundreds of replicate embryos of each genotype can be profiled and 
phenotypic variability quantified.

Second, profiling only a small fraction of cells present in E13.5 
embryos potentially limits sensitivity. However, for any given mutant, 

we had more than 1.5 million cells from other genotypes (wild type or 
other mutants), which facilitated the detection of mutant-specific 
phenotypes for rare cell types (for example, in the retina (Ttc21b KO) 
and roof plate (Gli2 KO)).

Third, we were not able to explore all mutants in detail, nor to thor-
oughly investigate other aspects of the data (for example, the differ-
ences between wild-type strains). In the future, we anticipate that 
community input and domain expertise will be essential to extract 
full value from these data. To facilitate this, we created an interac-
tive browser that allows exploration of mutant-specific effects on 
gene expression in trajectories and sub-trajectories, together with 
the underlying data (https://atlas.gs.washington.edu/mmca_v2/). 
Additionally, some of the phenotypes identified here have probably 
not been described before owing to the lack of resolution of conven-
tional phenotyping. New secondary validation strategies need to be 
developed to confirm subtle defects in molecular programs or subtle 
changes in the relative proportions of specific cell types. A promising 
approach would be to complement whole-embryo scRNA-seq with 
rapidly advancing methods for whole-mouse-body antibody labelling 
and three-dimensional imaging50.

Fourth, our results emphasize the importance of a well-matched 
control; although data from our wild-type embryos could be reused as 
control data for future studies of additional mutants, that risks batch 
effects, and a safer strategy would be to always include a well-matched, 
‘in-line’ wild-type control while profiling mutant embryos.

In 2011, the International Mouse Phenotyping Consortium set out 
to drive towards the ‘functionalization’ of every protein-coding gene 
in the mouse, by generating thousands of KO mouse lines51. In princi-
ple, the whole-embryo scRNA-seq phenotyping approach presented 
here could be extended to all Mendelian genes or even to all 20,000 
mouse gene KOs.

Online content
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Methods

Data reporting
No statistical methods were used to predetermine sample size. Embryos 
used in experiments were randomized before sample preparation. 
Investigators were blinded to group allocation during data collection 
and analysis. Embryo collection and sci-RNA-seq3 analysis were carried 
out by different researchers in different locations.

Embryo collection
Mutants were generated through conventional gene-editing tools and 
breeding or tetraploid aggregation and collected at the embryonic 
stage E13.5, calculated from the day of vaginal plug (noon = E0.5). Col-
lection and whole-embryo dissection were carried out as previously 
described52. The embryos were immediately snap-frozen in liquid nitro-
gen and shipped to the Shendure Lab (University of Washington) in dry 
ice. Sets of animals with the same genotype were either all male or half 
male–half female. All animal procedures were carried out in accordance 
with institutional, state and government regulations.

Isolation and fixation of nuclei
Snap-frozen embryos were processed as previously described3. Briefly, 
the frozen embryos were cut into small pieces with a blade and fur-
ther dissected by resuspension in 1 ml ice-cold cell lysis buffer (10 mM 
Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630, 1% 
SUPERase In and 1% BSA) in a 6-cm dish. After adding another 3 ml of 
cell lysis buffer, the sample was strained (40 μm) into a 15-ml Falcon 
tube and centrifuged to a pellet (500g, 5 min). By resuspending the 
sample with another 1 ml of cell lysis buffer, the isolation of nuclei 
was ensured. The nuclei were pelleted again (500g, 5 min) and then 
washed and fixed in 10 ml 4% paraformaldehyde (PFA) for 15 min  
on ice. The fixed nuclei were pelleted (500g, 3 min) and washed twice 
in the nucleus suspension buffer (500g, 5 min). The nuclei finally were 
resuspended in 500 μl nucleus suspension buffer and split into two 
tubes, each containing 250 μl of sample. The tubes were flash frozen 
in liquid nitrogen and stored in a −80 °C freezer, until further use for 
library preparation. The embryo preparation was carried out randomly 
for nuclei isolation to avoid batch effects.

sci-RNA-seq3 library preparation and sequencing
The library preparation was carried out as previously described53. In 
short, the fixed nuclei were permeabilized, sonicated and washed. 
Nuclei from each mouse embryo were then distributed into several 
individual wells in four 96-well plates. We split samples into four batches 
(about 25 samples randomly selected in each batch) for sci-RNA-seq3 
processing. The ID of the reverse transcription well was linked to the 
respective embryo for downstream analysis. In a first step, the nuclei 
were then mixed with oligo-dT primers and dNTP mix, denatured and 
placed on ice; afterwards, they were processed for reverse transcrip-
tion including a gradient incubation step. After reverse transcription, 
the nuclei from all wells were pooled with the nuclei dilution buffer 
(10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% SUPERase In and 
1% BSA), spun down and redistributed into 96-well plates containing the 
reaction mix for ligation. The ligation proceeded for 10 min at 25 °C. 
Afterwards, nuclei again were pooled with nuclei suspension buffer, 
spun down and washed and filtered. Next, the nuclei were counted 
and redistributed for second strand synthesis, which was carried out 
at 16 °C for 3 h. Afterwards, tagmentation mix was added to each well, 
and tagmentation was carried out for 5 min at 55 °C. To stop the reac-
tion, DNA binding buffer was added and the sample was incubated 
for another 5 min. Following an elution step using AMPure XP beads 
and elution mix, the samples were subjected to PCR amplification to 
generate sequencing libraries.

Finally after PCR amplification, the resulting amplicons were pooled 
and purified using AMPure XP beads. The library was analysed by 

electrophoresis and the concentration was calculated using Qubit 
(Invitrogen). The library was sequenced on the NovaSeq platform 
(Illumina; read 1: 34 cycles, read 2: 100 cycles, index 1: 10 cycles, index 
2: 10 cycles).

Processing of sequencing reads
Read alignment and cell × gene expression count matrix generation 
was carried out on the basis of the pipeline that we developed for 
sci-RNA-seq3 (ref. 3) with the following minor modifications: base 
calls were converted to fastq format using Illumina’s bcl2fastq v2.20 
and demultiplexed on the basis of PCR i5 and i7 barcodes using the 
maximum-likelihood demultiplexing package deML54 with default 
settings. Downstream sequence processing and cell × gene expres-
sion count matrix generation were similar to sci-RNA-seq55 except that 
the reverse transcription (RT) index was combined with the hairpin 
adaptor index, and thus the mapped reads were split into constitu-
ent cellular indices by demultiplexing reads using both the RT index 
and the ligation index (Levenshtein edit distance (ED) < 2, including 
insertions and deletions). Briefly, demultiplexed reads were filtered 
on the basis of the RT index and ligation index (ED < 2, including inser-
tions and deletions) and adaptor-clipped using trim_galore v0.6.5 with 
default settings. Trimmed reads were mapped to the mouse refer-
ence genome (mm10), using STAR v2.6.1d56 with default settings and 
gene annotations (GENCODE VM12 for mouse). Uniquely mapping 
reads were extracted, and duplicates were removed using the unique 
molecular identifier (UMI) sequence (ED < 2, including insertions and 
deletions), reverse transcription (RT) index, hairpin ligation adaptor 
index and read 2 end-coordinate (that is, reads with UMI sequence 
less than 2 ED, RT index, ligation adaptor index and tagmentation site 
were considered duplicates). Finally, mapped reads were split into con-
stituent cellular indices by further demultiplexing reads using the RT 
index and ligation hairpin (ED < 2, including insertions and deletions).  
To generate the cell-x-gene expression count matrix, we calculated the 
number of strand-specific UMIs for each cell mapping to the exonic and 
intronic regions of each gene with Python v2.7.13 HTseq package57. For 
multi-mapped reads, reads were assigned to the closest gene, except 
in cases in which another intersected gene fell within 100 base pairs of 
the end of the closest gene, in which case the read was discarded. For 
most analyses, we included both expected-strand intronic and exonic 
UMIs in the cell-x-gene expression count matrix.

The single-cell gene count matrix included 1,941,605 cells after cells 
with low quality (UMI ≤ 250 or detected gene ≤ 100) were filtered out. 
Each cell was assigned to its original mouse embryo on the basis of the 
reverse transcription barcode. We applied three strategies to detect 
potential doublet cells. As the first strategy, we split the dataset into 
subsets for each individual, and then applied the scrublet v0.1 pipe-
line58 to each subset with parameters (min_count = 3, min_cells = 3, 
vscore_percentile = 85, n_pc = 30, expected_doublet_rate = 0.06, sim_
doublet_ratio = 2, n_neighbors = 30, scaling_method = ‘log’) for doublet 
score calculation. Cells with doublet scores above 0.2 were annotated 
as detected doublets (5.5% in the whole dataset).

As the second strategy, we used an iterative clustering strategy based 
on Seurat v3 (ref. 59) to detect the doublet-derived subclusters for cells. 
Briefly, gene count mapping to sex chromosomes was removed before 
clustering and dimensionality reduction, and then genes with no count 
were filtered out and each cell was normalized by the total UMI count 
per cell. The top 1,000 genes with the highest variance were selected. 
The data was log-transformed after adding a pseudocount, and scaled 
to unit variance and zero mean. The dimensionality of the data was 
reduced by PCA (30 components) first and then with UMAP, followed 
by Louvain clustering carried out on the 10 PCs (resolution = 1.2). For 
Louvain clustering, we first fitted the top 10 PCs to compute a neigh-
bourhood graph of observations (k.param = 50) followed by cluster-
ing the cells into subgroups using the Louvain algorithm. For UMAP 
visualization, we directly fitted the PCA matrix with min_distance = 0.1. 
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For subcluster identification, we selected cells in each major cell type 
and applied PCA, UMAP and Louvain clustering similarly to the major 
cluster analysis. Subclusters with a detected doublet ratio (by Scrublet) 
above 15% were annotated as doublet-derived subclusters.

We found that the above Scrublet and iterative clustering-based 
approach is limited in marking cell doublets between abundant cell 
clusters and rare cell clusters (for example, less than 1% of the total cell 
population); thus, we applied a third strategy to further detect such 
doublet cells. Briefly, cells labelled as doublets (by Scrublet) or from 
doublet-derived subclusters were filtered out. For each cell, we retained 
only protein-coding genes, long intergenic noncoding RNA genes and 
pseudogenes. Genes expressed in fewer than 10 cells and cells express-
ing fewer than 100 genes were further filtered out. The downstream 
dimension reduction and clustering analysis were carried out with 
Monocle v3 (ref. 3). The dimensionality of the data was reduced by 
PCA (50 components) first on the top 5,000 most highly variable genes 
and then with UMAP (max_components = 2, n_neighbors = 50, min_
dist = 0.1, metric = ‘cosine’). Cell clusters were identified using the Lei-
den algorithm implemented in Monocle v3 (resolution = 1 × 10−6). Next, 
we took the cell clusters identified by Monocle v3 and first computed 
differentially expressed genes across cell clusters with the top_mark-
ers function of Monocle v3 (reference_cells = 1,000). We then selected 
a gene set combining the top 10 gene markers for each cell cluster  
(filtering out genes with fraction_expressing <0.1 and then ordering by 
pseudo_R2). Cells from each main cell cluster were selected for dimen-
sion reduction by PCA (10 components) first on the selected gene set 
of top cluster-specific gene markers, and then by UMAP (max_compo-
nents = 2, n_neighbors = 50, min_dist = 0.1, metric = ‘cosine’), followed 
by clustering identification using the Leiden algorithm implemented 
in Monocle v3 (resolution = 1 × 10−4). Subclusters showing low expres-
sion levels of markers specific for target cell clusters and enriched 
expression levels of markers specific for non-target cell clusters were 
annotated as doublet-derived subclusters and filtered out in visuali-
zation and downstream analysis. Finally, after removing the potential 
doublet cells detected by either of the above three strategies, 1,671,270 
cells were retained for further analyses.

Whole-mouse-embryo analysis
As described previously3, each cell could be assigned to the mouse 
embryo from which it derived on the basis of its reverse transcrip-
tion barcode. After removing doublet cells and another 25 cells that 
were poorly assigned to any mouse embryo, 1,671,245 cells from 103 
individual mouse embryos were retained (a median of 13,468 cells 
per embryo). UMI counts mapping to each sample were aggregated 
to generate a pseudobulk RNA-seq profile for each sample. Each cell’s 
counts were normalized by dividing them by the estimated size factor, 
and then the data were log2-transformed after adding a pseudocount 
followed by carrying out the PCA. The normalization and dimension 
reduction were carried out in Monocle v3.

We previously used sci-RNA-seq3 to generate the MOCA dataset, 
which profiled about 2 million cells derived from 61 wild-type B6 
mouse embryos staged between stages E9.5 and E13.5. The cleaned 
dataset, including 1,331,984 high-quality cells, was generated by remov-
ing cells with <400 detected UMIs as well as doublets (http://atlas.
gs.washington.edu/mouse-rna). UMI counts mapping to each sample 
were aggregated to generate a pseudobulk RNA-seq profile for each 
embryo. Each cell’s counts were normalized by dividing them by the 
estimated size factor, and then the data were log2-transformed after 
adding a pseudocount, followed by PCA. The PCA space was retained, 
and then the embryos from the MMCA dataset were projected onto it.

Cell clustering and annotation
After removing doublet cells, genes expressed in fewer than 10 cells 
and cells expressing fewer than 100 genes were further filtered out. 
We also filtered out low-quality cells on the basis of the proportion 

of reads mapping to the mitochondrial genome (MT%) or ribosomal 
genome (Ribo%) (specifically, filtering cells with MT% > 10 or Ribo% > 5). 
We then removed cells from two embryos that were identified as  
outliers on the basis of the whole-mouse-embryo analysis (embryo 
41 and embryo 104). This left 1,627,857 cells (median UMI count 845; 
median genes detected 539) from 101 individual embryos that were 
retained for all subsequent analyses.

To eliminate the potential heterogeneity between samples due to 
different mutant types and genotype backgrounds, we sought to carry 
out the dimensionality reduction on a subset of cells from the wild-type 
mice (including 15 embryos with 215,575 cells, 13.2% of all cells) followed 
by projecting all remaining cells, derived from the various mutant 
embryos, onto this same embedding. These procedures were carried 
out using Monocle v3. In brief, the dimensionality of the subset of data 
from the wild-type mice was reduced by PCA, retaining 50 components, 
and all remaining cells were projected onto that PCA embedding space. 
Next, to mitigate potential technical biases, we combined all cells from 
wild-type and mutant mice and applied the align_cds function imple-
mented in Monocle v3, with MT%, Ribo% and log-transformed total UMI 
of each cell as covariates. We took the subset of cells from wild-type 
mice, using their ‘aligned’ PC features to carry out UMAP (max_com-
ponents = 3, n_neighbors = 50, min_dist = 0.01, metric = ‘cosine’) by 
uwot v0.1.8, followed by saving the UMAP space. Cell clusters were 
identified using the Louvain algorithm implemented in Monocle v3 
on three dimensions of UMAP features, resulting in 13 isolated major 
trajectories (Fig. 1e). We then projected all of the remaining cells from 
mutant mouse embryos onto the previously saved UMAP space and 
predicted their major-trajectory labels using a k-nearest-neighbour 
(k-NN) heuristic. Specifically, for each mutant-derived cell, we identi-
fied its 15 nearest-neighbour wild-type-derived cells in UMAP space 
and then assigned the major trajectory with the maximum frequency 
within that set of 15 neighbours as the annotation of the mutant cell. 
We calculated the ratio of the maximum frequency to the total as the 
assigned score. Of note, more than 99.9% of the cells from the mutant 
mice had an assigned score greater than 0.8. The cell-type annotation 
for each major trajectory was based on expression of the known marker 
genes (Supplementary Table 2).

Within each major trajectory, we repeated a similar strategy, but with 
slightly adjusted PCA and UMAP parameters. For the major trajectories 
with more than 50,000 cells, we reduced the dimensionality by PCA to 
50 PCs; for the other major trajectories of more than 1,000 cells, we 
reduced the dimensionality by PCA to 30 PCs; for the remaining major 
trajectories, we reduced the dimensionality by PCA to 10 PCs. UMAP was 
carried out with max_components = 3, n_neighbors = 15, min_dist = 0.1, 
metric = ‘cosine’. For the mesenchymal trajectory, we observed a notable 
separation of cells by their cell-cycle phase in the UMAP embedding. We 
calculated a g2m index and an s index for individual cells by aggregating 
the log-transformed normalized expression for marker genes of the 
G2M phase and the S phase and then included them in the align_cds func-
tion along with the other factors. Applying these procedures to all of the 
major trajectories, we identified 64 sub-trajectories in total. Similarly, 
after assigning each cell from the mutant mice with a sub-trajectory 
label, we calculated the ratio of the maximum frequency to the total as 
the assigned score. Of note, more than 96.7% of the cells from the mutant 
mice had an assigned score greater than 0.8. The cell-type annotation 
for each sub-trajectory was also based on the expression of known 
marker genes (Supplementary Table 2).

Identification of correlated cell trajectories between datasets
To identify correlated cell trajectories between MOCA and MMCA data-
sets, we first calculated an aggregate expression value for each gene 
in each cell trajectory by summing the log-transformed normalized 
UMI counts of all cells of that trajectory. For consistency during the 
comparison to MOCA, we manually regrouped the cells from the MMCA 
dataset into 10 cell trajectories, by merging the olfactory sensory 
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neuron trajectory into the neural crest (peripheral nervous system 
neuron) trajectory, merging the myotube trajectory, the myoblast 
trajectory and the cardiomyocyte trajectory into the mesenchymal  
trajectory, and splitting the hepatocyte trajectory into the lens  
epithelial trajectory and the liver hepatocyte trajectory. Next, for the 
two datasets, we applied non-negative least-squares regression to 
predict gene expression in a target trajectory (Ta) in dataset A based on 
the gene expression of all trajectories (Mb) in dataset B: Ta = β0a + β1aMb, 
based on the union of the 3,000 most highly expressed genes and 3,000 
most highly specific genes in the target trajectory. We then switched 
the roles of datasets A and B; that is, predicting the gene expression of 
the target trajectory (Tb) in dataset B from the gene expression of all 
trajectories (Ma) in dataset A: Tb = β0b + β1bMa. Finally, for each trajectory  
a in dataset A and each trajectory b in dataset B, we combined the two 
correlation coefficients: β = 2(βab + 0.001)(βba + 0.001) to obtain a  
statistic, for which high values reflect reciprocal, specific predictivity.  
We repeated this analysis on sub-trajectories within each major  
trajectory.

Identification of significant cell composition changes in mutant 
mice using beta-binomial regression
A cell number matrix of all 64 developmental sub-trajectories (rows) 
and 101 embryos (columns) was created and the cell numbers were then 
normalized by the size factor of each column that was estimated by 
the estimate_size_factors function in Monocle v3. Ten sub-trajectories 
with a mean cell number across individual embryos <10 were filtered 
out. The beta-binomial regression was carried out using the VGAM 
package of R. The following code was used: vglm(cbind(ncelltype, ntotal - 
ncelltype) ~ genotype, family = betabinomial), where ncelltype refers to the 
trajectory-specific cell number, and ntotal refers to the total cell number 
of that embryo. Of note, embryos from the four different mouse strain 
backgrounds were analysed independently.

We reason that the power of our strategy to detect the cell propor-
tion changes between different genotypes is affected by three factors: 
the abundance of a given cell type; the number of replicates in each 
genotype group; and the effect size. To evaluate power, we carried out 
a simulation analysis that varied these factors, implemented as follows.
1. We selected the 20 most abundant cell types in wild-type embryos. 

Their abundances ranged from about 1% to about 20%. The propor-
tions of these cell types served as the basis for our simulations.

2. We simulated ten groups of ‘wild-type’ samples with 4, 8, 16, …, 40 
replicates in each group, wherein each sample consisted of cells 
drawn from the 20 cell types. For each replicate, the simulated 
number of cells of each cell type was calculated as the product of:  
(a) the cell-type proportions, simulated by fitting a Dirichlet model 
based on the real proportions from step 1; and (b) the total number 
of cells recovered for that replicate, simulated on the basis of the 
mean (n ≈ 15,000) and standard deviation of the cell numbers across 
replicates in the real dataset.

3. We simulated ten groups of ‘mutant’ samples by repeating the above 
step except adding shifts to the numbers of cells within each cell type. 
The shifting scales were based on different effect sizes. For instance, 
effect size =  0.1 represents a 10% reduction in the number of cells.

4. We carried out beta-binomial regression (the same test used in Fig. 2a) 
to test whether the cell-type proportions were significantly changed 
between simulated ‘wild-type’ and ‘mutant’ samples, further check-
ing the results as stratified by cell type (with different abundances), 
the number of replicates and the effect size.

The results are in line with our hypothesis that the detection power 
of our strategy varies among comparisons with different effect sizes, 
sample sizes or cell-type abundances (Extended Data Fig. 4). The main 
‘take-home’ messages are summarized below. 
1. Changes of 25% are robustly detectable, even for rare cell types (for 

example, <2%), with modest numbers of replicates.

2. Changes of 10% are possible to detect, but only for abundant cell 
types (for example, >5%). More replicates can help in this zone.

3. Changes of 1% are almost impossible to detect with a cell proportion 
approach, even with very large numbers of replicates.

In general, at the level of single-cell sampling carried out in our study, 
four samples (corresponding to the number of samples used in the 
manuscript) would be sufficient to detect a 25% effect size for those 
cell types present at a 1% proportion in wild-type embryos.

Defining and calculating lochNESS
To identify local enrichments or depletions of mutant cells, we aim 
to define a metric for each single cell to quantify the enrichments or 
depletions of mutant cells in its surrounding neighbourhood. For these 
analyses, we consider a mutant and a pooled wild type combining all 
four background strains in a major trajectory as a dataset. For each 
dataset, we define lochNESS as:

‐k
k N

lochNESS =
number of mutant cells in NNs

/
number of mutant cells in dataset

− 1,

in which N is the total number of cells in the dataset, k = N
2  scales with 

N, and the cells from the same embryo as the cell of interest are excluded 
from the k-NNs. Note that this value is equivalent to the fold change of 
mutant cell percentage in the neighbourhood of a cell relative to in the 
whole major trajectory. For implementation, we took the aligned PCs 
in each sub-trajectory as calculated above, and for each cell in an 
embryo we find the k-NNs in the remaining mutant embryo cells and 
wild-type cells. We plot the lochNESS in a red–white–blue scale, for 
which white corresponds to 0 or the median lochNESS, blue corre-
sponds to high lochNESS or enrichments, and red corresponds to low 
lochNESS or depletions.

At present, we calculate lochNESS using a pooled wild type combin-
ing all four background strains to include larger numbers of cells in 
constructing the k-NN graph. If the numbers of cells are sufficient, a 
wild type from the matched background strain can be used. Addition-
ally, if the numbers of cells are sufficient, one set of lochNESS can be 
calculated for each wild-type sample separately and the variability 
between samples can be considered.

Examining global distributions of lochNESS
Plotting the global distributions of lochNESS for each mutant across 
all sub-trajectories, we further observed that some mutants (for exam-
ple, most TAD boundary KOs; Scn11a GOF) exhibit unremarkable distri-
butions (Extended Data Fig. 6a). However, others (for example, Sox9 
regulatory INV; Scn10a/11a double KO) are associated with a marked 
excess of high lochNESS, consistent with mutant-specific effects on 
transcriptional state across many developmental systems. For refer-
ence, we simultaneously create a null distribution of lochNESS using 
random permutation of the mutant and wild-type cell labels, simulating 
datasets in which the cells are randomly mixed. Of note, we confirmed 
that repeating the calculation of lochNESS after random permutation 
of mutant and wild-type labels resulted in bell-shaped distributions 
centred around zero (Extended Data Fig. 6b). As such, the deviance of 
lochNESS can be summarized as the average Euclidean distance between 
lochNESS versus lochNESS under permutation (Extended Data Fig. 6c). 
In addition, we computed lochNESS between wild types from different 
background strains and observed minimal variation in cell distribution 
between the wild type from G4, FVB and BALB/c strains and potential 
strain-specific distributions in wild-type C57BL/6 mice (Extended  
Data Fig. 6d).

Comparing lochNESS with the batch-mixing score the local 
inverse Simpson index
LochNESS shares conceptual similarities with batch-correcting meas-
urement scores such as the local inverse Simpson index (LISI)60, which 
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quantifies the amount of mixing in a cell’s neighbourhood by counting 
the number of batches represented in the neighbourhood. As a direct 
comparison, we calculated LISI on each mutant with a pooled wild-type 
reference in PCA space. We calculated LISI with a dynamic perplexity 
based on the dataset size ( Nperplexity = floor(0.5 × ( )/3 ), K = 3 ×  
perplexity), similar to our strategy for determining the neighbourhood 
size for lochNESS. Focusing on the G4 mutants as an example, the 
results show a correlation between LISI and lochNESS, for which LISI 
values close to 1 correspond to the more extreme positive or negative 
values of lochNESS as expected (Extended Data Fig. 6f). LochNESS has 
several conceptual advantages compared to LISI. First, lochNESS can 
easily determine whether the mutant sample is enriched or depleted 
in an area that is not well mixed using the sign of the value (posi-
tive = enrichment, negative = depletion), whereas LISI can separate 
only mixed (scores approaching 2) versus separated (scores approach-
ing 1). Second, lochNESS can be easily extended to comparisons 
between multiple samples, whereas LISI is relatively restricted to pair-
wise comparisons. Third, lochNESS considers a dataset-specific neigh-
bourhood size and baseline proportions.

Identifying lochNESS-associated gene expression changes
To identify gene expression changes associated with mutant-enriched 
or mutant-depleted areas, we find differentially expressed genes 
through fitting a regression model for each gene accounting for loch-
NESS. We use the fit_models() function implemented in Monocle v3 
with lochNESS as the model_formula_str. This essentially fits a general-
ized linear model for each gene: y β β xlog( ) = + ×i i i0 , in which yi is the 
gene expression of gene i, βn captures the effect of the lochNESS xn on 
expression of gene i, and β0 is the intercept. For each gene i, we test 
whether βi is significantly different from zero using a Wald test, and 
after testing all genes, we adjust the P values using the Benjamini– 
Hochberg procedure to account for multiple hypothesis testing. We 
identify the genes that have adjusted P value < 0.05 and large positive 
βi values as associated with mutant-enriched areas, and those with 
large negative βi values as associated with mutant-depleted areas.

Systematic screening of lochNESS distributions
LochNESS distributions can be systematically screened to identify 
sub-trajectories exhibiting substantial mutant-specific shifts. For exam-
ple, although all TAD boundary KO mutants have similarly unremark-
able global lochNESS distributions, when we plot these distributions by 
sub-trajectory, a handful of shifted distributions are evident (Extended 
Data Fig. 9a). Such deviations, summarized as the average Euclidean 
distances between lochNESS and lochNESS under permutation, are 
visualized in Extended Data Fig. 9b. For example, multiple epithelial 
sub-trajectories, including pre-epidermal keratinocyte, epidermis, 
branchial arch and lung epithelial trajectories, are most shifted in Tbx3 
TAD boundary KO cells. Co-embeddings of mutant and wild-type cells 
of these sub-trajectories, together with regression analysis, identify 
multiple keratin genes as positively correlated with lochNESS, consist-
ent with a role for Tbx3 in epidermal development38 (Extended Data 
Fig. 9c,d and Supplementary Table 7). The lung epithelial cells were 
separated into two clusters, with the cluster more depleted in Tbx3 TAD 
boundary KO cells marked by expression of Etv5, which encodes a tran-
scription factor associated with alveolar type II cell development, as well 
as Bmp signalling genes that regulate Tbx3 during lung development 
(Bmp1/4), and the distal airway markers Sox9 and Id2 (Supplementary 
Table 4). Of note, the shifts that we observed in Tbx3 TAD boundary KO 
cells remain preliminary and would need to be confirmed by further 
validation experiments.

Spatial mapping with Tangram
We computationally map our dataset onto a spatially resolved tran-
scriptomics dataset, the mouse organogenesis spatiotemporal tran-
scriptomics atlas (MOSTA) generated with Stereo-seq37. The atlas has 

a total of 53 sagittal sections from C57BL/6 mouse embryos from E9.5 
to E16.5 in 1-day intervals, and we obtained one section from the most 
relevant E13.5 data (E13.5_E1S1.MOSTA.h5ad) from the data-sharing 
website associated with the manuscript: https://db.cngb.org/stom-
ics/mosta/download/. To map the cells for each single cell cluster on 
the spatially resolved transcriptomics dataset, we used a machine 
learning-based method called Tangram61. Briefly, Tangram is a com-
putational tool that uses a Bayesian approach to infer the spatial loca-
tions of cells in a single-cell transcriptomics dataset on the basis of their 
transcriptomic profiles and the spatial patterns of gene expression in 
the spatially resolved dataset. The relevant subset of the MMCA data 
was preprocessed in Scanpy, but the metadata were inherited from 
the results generated in the section above entitled Cell clustering and 
annotation. We used Tangram with default parameters to estimate the 
spatial coordinates of cells from each cluster in the single-cell data-
set and visualized results on the coordinates provided by MOSTA. We 
trained the Tangram model in gpu mode using an NVIDIA A100 GPU. 
Overall, Tangram provided a powerful method for mapping the cells 
from the scRNA-seq dataset onto MOSTA, enabling us to infer the spatial 
locations of different cell clusters of interest within the tissue.

Calculating mutant and embryo similarity scores
We can extend the lochNESS analysis, which is computed on each 
mutant and its corresponding wild-type mice, to compute ‘similarity 
scores’ between all pairs of individual embryos from the same back-
ground strain. We consider all embryos in the same background in a 
major trajectory as a dataset. For each dataset, we define a ‘similarity 
score’ between cell n and embryo j as:

‐j k n
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j
N

similarity score =
no. of cells from embryo in NNs of cell

/
no. of cells from embryo in dataset

n jcell ,embryo

in which N is the total number of cells in the dataset and k = N
2 . We take 

the mean of the similarity scores across all cells in the same embryo, 
resulting in an embryo similarity score matrix for which entries are:

∑n
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in which ni is the number of cells in embryo i.

Identifying and quantifying developmental delay
To identify potential mutant-related developmental delay, we integrate 
MMCA with MOCA. We consider a mutant and its corresponding wild 
type in a sub-trajectory as a dataset. We take the cells from E11.5 to E13.5 
with similar annotations from MOCA and co-embed with the MMCA 
cells. We take the raw counts from both datasets, normalize and process 
the data together without explicit batch correction as both datasets 
were generated with sci-RNA-seq3 and were similar in dataset quality. 
We visualize the co-embedded data in three-dimensional UMAP space 
and check for developmental delay in the mutant cells (that is, mutant 
cells embedded closer to early MOCA cells compared to wild-type cells). 
To quantify the amount of developmental delay, we find k-NNs in MOCA 

for each cell in MMCA and calculate time score =
∑ T

k
nn

k
=1 , in which Tn is 

the developmental time of MOCA cell n in the k-NNs of the MMCA cell. 
Afterwards, we test whether the average time scores of mutant cells are 
significantly different from that of wild-type cells using a Student’s t-test.

RNAscope in situ hybridization
For RNAscope, embryos were collected at stage E13.5 and fixed for 4 h 
in 4% PFA in PBS at room temperature. The embryos were washed twice 
in PBS before incubation in a sucrose series (5%, 10% and finally 15% 
sucrose (Roth) in PBS) each for 1 h or until the embryos sank to the bot-
tom of the tube. Finally, the embryos were incubated in 15% sucrose in 
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PBS and O.C.T. (Sakura) in a 1:1 solution before embedding the embryos 
in O.C.T. in a chilled ethanol bath and storing them at −80 °C until sec-
tioning. The embryos were cut into 5-μm-thick sections on slides for  
RNAscope.

Simultaneous RNA in situ hybridization was carried out using the 
RNAscope technology (Advanced Cell Diagnostics (ACD)) and the fol-
lowing probes specific for Mm-K (catalogue number 476261, ACD) and 
Mm-Sox9-C2 (catalogue number 401051-C2, ACD) on 5-μm sections 
of the mouse embryos. RNAscope probes were purchased from ACD 
and designed as described62. The RNAscope assay was run on a HybEZ 
II Hybridization System (catalogue number 321720, ACD) using the 
RNAscope Multiplex Fluorescent Reagent Kit v2 (catalogue number 
323100, ACD) and the manufacturer’s protocol for fixed-frozen tissue 
samples with target retrieval on a hotplate for 5 min. Fluorescent label-
ling of the RNAscope probes was achieved by using OPAL 520 and OPAL 
570 dyes (catalogue numbers FP1487001KT and FP1488001KT, Akoya 
Biosciences), and stained sections were scanned at ×25 magnification 
using an LSM 980 with Airyscan 2 (Zeiss).

Image analysis
For quantitative analysis of the RNAscope images, representative fields 
of view for each stained section were analysed using the image pro-
cessing software Fiji63. The mRNA signal for each organ of interest was 
counted in a defined area (1 × 1 mm²), with n = 6 per condition. Statistics 
were calculated using Student’ t-test and evaluated (not significant, 
P > 0.05; *P < 0.05 to ≥ 0.01; **P < 0.01 to ≥ 0.001; ***P < 0.001).

Ttc21b- and Gli2-mutant fixation for haematoxylin and eosin 
staining and immunofluorescence
Homozygous and heterozygous Ttc21b mutants and wild-type E13.5 
mouse embryos were fixed overnight in 4% PFA at 4 °C. To stop fixa-
tion, the samples were transferred into 70% ethanol, washed twice and 
dehydrated. In the following, the embryos were embedded in paraffin, 
and cut into 2.5-μm-thick sections.

Ttc21b-mutant haematoxylin and eosin staining
Histochemical staining was carried out on the eyes of the embryos 
using haematoxylin and eosin. Slides were scanned with a digital slide 
scanner (NanoZoomer 2.0HT) and analysed using NDP.view2 soft-
ware (Hamamatsu Photonics). The following numbers of embryos 
were processed: 2 wild type; 2 heterozygous Ttc21b ; 4 homozygous  
Ttc21b.

Gli2-mutant haematoxylin and eosin staining and 
immunofluorescence
For the histological analysis, haematoxylin and eosin staining of E13.5 
Gli2-KO mouse embryos, and respective wild-type littermates (n = 4 
and n = 2, respectively), was carried out on 4% paraformaldehyde-fixed 
paraffin-embedded sections (3 μm). Stained paraffin sections were 
scanned using a digital slide scanner (NanoZoomer 2.0HT) and exam-
ined using NDP.view2 software. The cut regions and positions were 
annotated according to ref. 64.

The spatial abundance patterns of prealbumin as a marker for 
ChP and PAX6 as a marker for neural tube development were ana-
lysed by immunofluorescence, using specific antibodies (rabbit 
monoclonal (EPR20971) to prealbumin (1:1,000, Abcam) and rab-
bit polyclonal antibody to PAX6 (1:200, AB2237 Merck Sigma) in an 
automated BOND Research Detection system. Antibody binding was 
detected by goat anti-rabbit Alexa Fluor 488-conjugated secondary 
antibody (Leica, A-11008). Nuclear counterstaining was achieved 
using 4′,6-diamino-2-phenylindole (DAPI). In negative-control  
sections, the primary antibodies were omitted and antibody diluent  
was applied.

Stained embryo sections were scanned with an AxioScan 7 digital 
slide scanner (Zeiss).

Fluorescence quantification
Quantification of prealbumin expression cells was carried out using 
the image analysis software Definiens Developer XD2 (Definiens). The 
regions of interest (1–4) within the fourth and lateral ventricle ChP 
were annotated manually in serial sections. The calculated parameter 
was the ratio of the total number of prealbumin-positive cells over the 
embryo section area (in micrometres).

Statistics and reproducibility
Haematoxylin and eosin staining of the developing eye (Fig. 2c) was 
carried out on homozygous Ttc21b mutants (n = 4), heterozygous Ttc21b 
mutants (n = 2) and wild-type E13.5 embryos (n = 2). Experiments on the 
sections were carried out in parallel to ensure consistency.

Haematoxylin and eosin staining of Gli2-mutant and wild-type 
embryo sections (Extended Data Fig. 8a) was carried out on homozy-
gous Gli2-KO (n = 4) and wild-type (n = 2) samples. Experiments on the 
sections were carried out in parallel to ensure consistency.

Immunofluorescence staining of the ChP marker TTR and neural 
tube marker PAX6 (Fig. 3f and Extended Data Fig. 8b–d) was carried 
out on sections of homozygous Gli2-KO (n = 4) and wild-type (n = 2) 
samples. Immunofluorescence of the same antibody was carried out 
on all mutants in parallel to ensure consistency.

Sox9 and Kcnj2 expression of heterozygous E13.5 wild-type and Sox9 
regulatory INV mutant embryos (n = 6 embryos for each condition) 
was measured by RNAscope image quantification in a defined area 
(1 ×1 mm²). Statistics were calculated using a two-sided Student’ t-test 
and evaluated as follows: not significant, P > 0.05; *P < 0.05 to ≥ 0.01; 
**P < 0.01 to ≥ 0.001; ***P < 0.001. RNAscope of the tissue was carried 
out on all samples in parallel to ensure consistency.

Clustering and annotation limb mesenchyme trajectory
Seurat v4.0.6 was used for the analysis. Wild-type cells in the limb 
mesenchyme trajectory from all wild-type mice (n = 15 mice, n = 25,211 
cells) were used to first annotate the cells. The raw counts were 
log-normalized, after which PCA was carried out with default param-
eters on the top 2,000 highly variable genes selected using the vst 
method. Nearest neighbours were computed on the PCA space, with 
default parameters, except that all of the PCs computed earlier were 
used. Clustering was carried out using the Louvain community detec-
tion algorithm with a resolution of 0.1, resulting in three clusters. Posi-
tive marker genes for these clusters were identified using the Wilcoxon 
rank-sum test, for which only the genes expressed in at least 20% of the 
cells in either cell group were considered. The clusters were annotated 
on the basis of biologically relevant markers (Extended Data Fig. 12f). 
The newly assigned cell annotations for the limb mesenchyme trajec-
tory cells in the wild-type dataset were transferred to the corresponding 
cells in the Sox9 regulatory INV mutant using the FindTransferAnchors 
and TransferData functions using default parameters, except that all 
of the computed PCs were used. A total of 92.3% of the transferred 
annotations had a score (prediction.score.max) greater than or  
equal to 0.8.

Density visualization and RNA velocity analysis
Using Seurat v4.0.6, the raw counts were log-normalized, and PCA was  
carried out with default parameters on the top highly variable 
genes 2,000 genes, selected using the vst method. Dimensionality 
reduction was carried out using PCA with default parameters, after 
which the UMAP embedding was carried out on all computed PC 
components. Density plots were created using the stat_2d_density_ 
filled function in ggplot2 v3.3.5. For RNA velocity analysis using 
scVelo v0.2.4, the total, spliced and unspliced count matrices, along 
with the UMAP embeddings, were exported as an h5ad file using ann-
data v0.7.5.2 for R. The count matrices were filtered and normalized 
using scv.pp.filter_and_normalize, with min_shared_counts = 20 and 
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n_top_genes = 2,000. Means and variances between 30 nearest neigh-
bours were calculated in the PCA space (n_pcs = 50, to be consistent 
with the default value in Seurat). The velocities were calculated using 
default parameters and projected onto the UMAP embedding exported  
from Seurat.

Single-sample gene set enrichment analysis
Single-sample gene set enrichment analysis was applied to scRNA-seq 
data using the escape package in R65. The msigdbr and getGeneSets 
functions were used to fetch and filter the entire hallmark (H; 50 sets) 
or the signature cell type (C8; 700 sets) M. musculus gene sets from 
MSigDB66. enrichIt with default parameters, except for using 10,000 
groups and variable number of cores, was carried out on the Seurat 
object containing data corresponding to the undifferentiated mesen-
chyme cells from the Sox9 regulatory INV mutant, after converting the 
feature names to gene symbols as necessitated by the escape package. 
The obtained enrichment scores for each gene set were compared 
between the two branches (Fig. 5f) using the two-sample Wilcoxon 
test (wilcox_test) with default parameters and adjusted for multiple 
comparisons using Bonferroni correction.

Integration and spatial mapping with sci-space data
We integrated our dataset with a spatial transcriptomics dataset on 
mid-gestational mice (E14.5), based on the sci-space method47, in 
which a subset of transcriptionally profiled nuclei have known physi-
cal locations in sagittal sections within which they were mapped before 
scRNA-seq. We used anchor-based integration as implemented by  
Seurat for a co-embedding of a subset of MMCA and sci-space. For cells 
in the subset of MMCA, we find the nearest neighbour in sci-space data 
in the integrated co-embedding, and plot the location of the neighbour-
ing sci-space cell if it is known.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.
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Extended Data Fig. 1 | Images of mouse embryos and integrating cells  
derived from embryos of multiple genetic backgrounds to a single, 
wildtype-based “reference embedding”. a, 104 embryos (26 genotypes x 4 
replicates) were staged at E13.5 and sent by five groups to a single site. #49  
was accidentally skipped in our numbering systems. Embryo #70 was lost in 
transport. Pictures of embryos #1, #5, #9, #13 and #91 were not taken, but the 
embryos were included in the sci-RNA-seq3 experiment. As discussed in the 
text, embryos #41 and #104 were labelled as outliers based on computational 
analyses and their data discarded, while data from the remaining 101 embryos 
were retained and analysed further. Of note, in addition to the computational 
analyses suggesting that embryo #104 was an outlier, it was also relatively 
small in size upon visualisation. b, Schematic of approach. We first applied 
principal components-based dimensionality reduction to cells from wildtype 
genotypes only (①). We then projected cells from the mutant embryos to this 

PCA embedding (②). Next, to mitigate potential biases from technical factors,  
we applied the align_cds function in Monocle/v3, with the MT%, Ribo%, and log-
transformed total UMIs of each cell as covariates (③). We then split wildtype 
and mutant cells again (④ & ⑤), and applied the UMAP algorithm to wildtype 
cells only using their “aligned” PC features (⑥), followed by Louvain clustering 
and manual annotation of individual clusters based on marker gene expression 
to identify major trajectories, and then iterative clustering and annotation to 
identity and annotate sub-trajectories (⑦). Finally, cells from mutant embryos 
were projected to this wildtype-based UMAP embedding, again using their 
aligned PC features (⑧). Major trajectory labels were assigned to mutant  
cells via a k-nearest neighbour (k-NN) heuristic, and these last steps were 
repeated to further assign sub-trajectory labels to mutant cells (⑨). c, 3D UMAP 
visualisations of cells from each wildtype or mutant background within the 
shared “reference embedding” resulting from the aforedescribed procedures.



Extended Data Fig. 2 | Annotation of sub-trajectories in data from wildtype 
E13.5 embryos and Correlated developmental major and sub-trajectories 
between MOCA (E9.5 - E13.5) and MMCA (E13.5 only) based on non-negative 
least-squares (NNLS) regression. a, From 215,517 single cell profiles of 
wildtype E13.5 embryos of four strains in MMCA, we annotated 13 major 
trajectories. For 8 of these 13 major trajectories, iterative analysis identified 
the additional sub-trajectories shown here as 3D UMAP visualisations. Cells are 
coloured by sub-trajectory annotations. PNS: peripheral nervous system.  

MHB: midbrain-hindbrain boundary. Di: Diencephalon. b, Shown in the top 
right is a heat map of the combined regression coefficients (row-scaled) 
between 10 developmental trajectories from MMCA (rows) and 10 corresponding 
developmental trajectories from the MOCA (columns). PNS: peripheral nervous 
system. The other heat maps show the combined regression coefficients 
(row-scaled) between developmental sub-trajectories from MMCA (rows) and 
developmental sub-trajectories from the MOCA (columns), within each major 
trajectory.
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Extended Data Fig. 3 | Cell composition for individual wildtype and mutant 
embryos across developmental trajectories. a, Cell composition across  
13 major trajectories of embryos from different wildtype or mutant strains. 
Cells from all replicates for each strain were pooled for this visualisation.  
The adjusted p-value by Chi-squared test on cell compositions for individual 
mutant type and its corresponding genetic background wildtype has been 
added above. b, Boxplots of cell proportions falling into neural tube (left) or 
mesenchymal (right) trajectories for different wildtype or mutant strains. Points 

correspond to individual embryos (n = 3 for WT-C57BL/6, n = 4 for all others).  
c, Boxplots of cell proportions falling into each of the 13 major trajectories for 
the four wildtype strains. Each point corresponds to an individual embryo.  
The total number of cells from each major trajectory profiled from wildtype 
embryos and the adjusted p-value by ANOVA (two-sided test) across different 
backgrounds are also listed. In the boxplots (panels b & c), the centre lines show 
the medians; the box limits indicate the 25th and 75th percentiles; the replicates 
are represented by the dots. PNS: peripheral nervous system.
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Extended Data Fig. 4 | Cell composition for individual wildtype and mutant 
embryos across developmental trajectories, from different technical or 
biological groups and Simulation-based estimation of the number of 
replicates required to detect cell proportion changes. a, Boxplots of cell 
proportions falling into each of the 13 major trajectories from different  
sample origins (left), experimental batch (middle), or sex (right). Each point 
corresponds to an individual embryo. In the boxplots, the centre lines show the 
medians; the box limits indicate the 25th and 75th percentiles; the replicates 
are represented by the dots. b, ANOVA (two-sided test) was performed on cell 
proportions falling into each of the 13 major trajectories from different sample 
origins (top), experimental batch (middle), or sex (bottom), and the minus 
log10-scaled adjusted p-values have been shown. The red horizontal line 
corresponds to significant cutoff (0.05). c, ANOVA (two-sided test) was 
performed on cell proportions falling into each of the 13 major trajectories 
from different experimental batches after subsetting samples from C57BL/6 

(top), FVB (middle), or G4 (bottom), and the log10-scaled adjusted p-values 
have been shown. The red horizontal line corresponds to significant cutoff 
(0.05). NC: neural crest. PNS: peripheral nervous system. SN: sensory neuron. 
d, We simulated “wildtype” and “mutant” embryos with parameters drawn 
from our data (Methods), and then performed beta-binomial regression to  
ask whether cell-type proportions for a given cell type are different between 
genotypes while varying simulated effect sizes and varying numbers of 
replicates. In the global view, each column represents a given effect size  
(e.g. 0.01, highlighted on the top) and each row represents a given cell type, 
with its cell proportion in the whole embryo highlighted at the right. Each single 
plot represents the testing results of beta-binomial regression for different 
numbers of replicates of each genotype (y-axis, ranging from 4 to 40). The x-axis 
refers to -log10 scaled unadjusted p-values, and the dot is coloured either red 
(insignificant testing result with unadjusted p-value > 0.05) or blue (significant 
testing result with unadjusted p-value < 0.05).
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Extended Data Fig. 5 | Multiple retinal trajectories are diminished in Ttc21b 
KO mice. a, The log2 transformed ratio of the cell proportions of each sub-
trajectory, comparing Ttc21b KO and C57BL/6 wildtype embryos, are shown. 
Although reductions in the retina epithelial and lens trajectories were excluded 
from the regression analysis due to their low numbers, they were, together with 
the retinal neuron trajectory, the most extreme in magnitude. b, 3D UMAP 
visualisation of the hepatocyte major trajectory, highlighting cells from either 
the Ttc21b KO (left), C57BL/6 wildtype (middle), or other mutants on the 
C57BL/6 background (right). The three plots were randomly downsampled  
to the same number of cells (n = 264 cells) c, 3D UMAP visualisation of the 
epithelial major trajectory, highlighting cells from either the Ttc21b KO (left), 
C57BL/6 wildtype (middle), or other mutants on the C57BL/6 background 

(right). The three plots were randomly downsampled to the same number of 
cells (n = 937 cells). d, UMAP visualisation of co-embedded cells of limb 
mesenchyme trajectory from the ZRS limb enhancer KO and FVB wildtype.  
The same UMAP is shown eight times, highlighting cells from either ZRS limb 
enhancer KO (top row) or FVB wildtype (bottom row), and breaking out the four 
individual replicates for each strain. e, UMAP visualisation of co-embedded 
cells of various sub-trajectories from the ZRS limb enhancer KO and FVB 
wildtype. The same UMAP is shown twice for each, highlighting cells from 
either FVB wildtype (left) or ZRS limb enhancer KO (right). These are the seven 
sub-trajectories in which, in addition to limb mesenchyme, we detected 
nominally significant differences in cell type proportions for the ZRS limb 
enhancer KO.



Extended Data Fig. 6 | Quantitative analysis of lochNESS distributions.  
a, Distribution of lochNESS across all 64 sub-trajectories in each mutant.  
b, Distribution of lochNESS in all cells of each mutant under random permutation  
of mutant labels. c, Barplot showing the average euclidean distance between 
lochNESS vs. lochNESS under permutation across all cells within a mutant.  
d, Estimated density graphs of lochNESS shows distribution of lochNESS in 
wildtype comparisons. Each comparison is labelled by the strain treated as  
the ‘mutant’, followed by the strain treated as the reference (i.e. G4 vs. FVB 

indicates that G4 was treated as the ‘mutant’ in the comparison). e, Barplots 
showing the average euclidean distance between lochNESS and lochNESS 
under permutation, across all cells in neural tube sub-trajectories of the Ttc21b 
KO and Gli2 KO mutants. f, Scaterplots showing the concordance of lochNESS 
and LISI of cells from the G4 mutants in various major trajectories. More 
extreme lochNESS (indicating separation between mutant and wildtype) is 
associated with LISI scores approaching one (indicating non-mixing).
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Extended Data Fig. 7 | Analysis of Gli2 KO in the roof plate and floor plate 
trajectories. a, UMAP visualisation of co-embedded cells of the floor plate and 
roof plate sub-trajectories from the Gli2 KO mutant and pooled wildtype, 
coloured by sub-trajectory (left) or cluster number (right). b, Boxplot showing 
the lochNESS distribution in each cluster shown on the right of panel a (n = 717 
cells in cluster 1, n = 594 cells in cluster 2, n = 442 cells in cluster 3). Centre lines 
show medians; box limits indicate 25th and 75th percentiles; outlier individual 
cells are represented by dots. c, Barplots showing the cell composition of each 
cluster shown on the right of panel a, split by mutant vs. wildtype (left) or 

individual embryo (right), with a reference line at the overall wildtype cell 
proportion. d, Dotplot summarising the expression of and percent of cells 
expressing selected marker genes in each cluster shown on the right of panel a. 
e, Tangram-inferred locations of each cluster shown on the right of panel a. Red 
arrows highlight the areas where cells map to with high probability. The colour 
scale is set from 1st percentile to 99th percentile. f, UMAP visualisation of 
co-embedded cells of the floor plate and roof plate sub-trajectories from the 
Gli2 KO mutant and pooled wildtype, coloured by expression of marker genes.
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Extended Data Fig. 8 | Morphological phenotype of Gli2 KO mutants and Ttr 
staining in wildtype mice and Gli2 KO mutants. a, H&E staining (Methods)  
of two mutant and two wild type E13.5 embryos in cranial-caudal (1–3) order 
within the head. In order to compare mutant and wildtype slides in neural tube 
development, the slides are matched based on hallmarks such as eyes, tongue 
muscle and nasal cavities (black scale bars correspond to 500 μm). b, Neural tube 
marker Pax6 staining (Methods) of the developing neural tube in consecutive 
sections 1.3 and 2.3 to visualise the structure of the neural tube formation in 
wildtype and mutant in 10x and 20x magnification (white scale bars corresponds 

to 100 and 50 μm). Ttr staining (Methods) of the developing brain regions  
(LV = lateral ventricle, 4 V = 4th ventricle, ChP = choroid plexus) in sections of c, 
wildtype and d, Gli2 KO mutants in 2x, 10x and 20x magnification. For each 
section (2x magnification, white scale bars correspond to 500 μm), the regions 
of interest are highlighted with white boxes and shown in higher magnification 
on the sides (10x or 20x magnification, white scale bars correspond to 100 or 
50 μm respectively). Red arrows highlight areas with a normal single layer of Ttr 
expressing cells in wildtype, and two layers of cells in the mutant.
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Extended Data Fig. 9 | Systematic screening of lochNESS distributions 
identifies altered epithelial sub-trajectories in the Tbx3 TAD Boundary KO 
mutant. a, Distribution of lochNESS in each sub-trajectory of the mutants in 
the FVB background strain, all of which are TAD boundary KOs. Dashed boxes in 
the sixth column highlight the most deviated epithelial sub-trajectories in the 
Tbx3 TAD Boundary KO mutant. b, Row-normalised heatmap showing the 
average euclidean distance between lochNESS and lochNESS under permutation 
in each sub-trajectory for the same mutants shown in panel a, centred and 
scaled by row. Dashed boxes in the sixth column again highlight the most 

deviated epithelial sub-trajectories in the Tbx3 TAD Boundary KO mutant.  
c, UMAP showing co-embedding of Tbx3 TAD Boundary KO and pooled 
wildtype cells in the pre−epidermal keratinocyte, epidermis, branchial arch, 
and lung epithelial sub-trajectories, coloured by lochNESS (top left) [with 
blown up insets showing lochNESS in lung epithelial (bottom left) and 
epidermis (bottom right) sub-trajectories], or by sub-trajectory identity 
(right). LochNESS colour scale is centred at the median of lochNESS. d, same  
as in panel c, but coloured by expression of selected mutant related genes and 
marker genes.
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Extended Data Fig. 10 | Similarity scores reveal mutant-shared and mutant-
specific effects. a, Heatmap showing similarity scores between C57BL/6 
genotypes in the mesenchymal trajectory. b, Boxplot showing the similarity 
scores of comparisons between embryos of different genotypes (left), between 
embryos of the same genotype (middle), and within the same embryos (right) 
for C57BL/6 genotypes in the mesenchymal trajectory. c, Boxplot showing the 
similarity scores of comparisons between Atp6v0a2 KO vs. Atp6v0a2 R755Q 
(left), Atp6v0a2 KO or Atp6v0a2 R755Q vs. Gorab KO (middle), Atp6v0a2 KO or 
Atp6v0a2 R755Q vs. other C57BL/6 genotypes, in the mesenchymal trajectory. 
Genotype names are simplified in the x-axis legend (“Atp” = Atp6v0a2 KO or 
Atp6v0a2, “Gorab” = Gorab KO, “others” = Carm1 KO, Gli2 KO, Scn10a/11a DKO, 
Scn11a GOF, Ttc21b KO or C57BL/6 wildtype). d, UMAPs showing co-embedding 
of Scn11a GOF cells with pooled wildtype cells and E11.5-E13.5 MOCA cells,  

in the neural tube trajectory, split by mutant (MMCA) and time point (MOCA), 
with cell density and distributions overlaid. e, Barplots showing the distribution 
of “time scores” for Scn11a GOF cells and pooled wildtype cells in the 
mesenchyme, neural tube, endothelial and epithelial major trajectories, with 
reference lines at the mean value of time scores. f, Heatmaps showing similarity 
scores between C57BL/6 genotypes in selected major trajectories. Gorab KO 
exhibits high similarity to the two Atp6v0a2 genotypes in the epithelial, 
endothelial, hepatocyte and neural crest (PNS glia) trajectories, but not the 
neural tube and hematopoiesis trajectories. g, Scn11a mutant and wildtype 
morphology comparison. Images of 14 E13.5 staged embryos from two litters  
of wildtype and Scn11a heterozygous mutants. Accessible developmental 
features (limbs,eyes and body size) were compared between the mutants and 
the wildtype by eye.



Extended Data Fig. 11 | Spatial mapping of lateral plate & intermediate 
mesoderm sub-clusters. Spatial mapping results by Tangram showing the 
most likely physical location of the cells from each cluster in the lateral plate & 

intermediate mesoderm sub-trajectory on a sagittal mouse section. Top 12 
sub-clusters are shown. The colour scale is set from 1st percentile to 99th 
percentile.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Misregulation of Sox9 and Kcnj2, and stalling of cells 
in the undifferentiated mesenchyme in the Sox9 regulatory INV mutant.  
a, Quantification of Sox9 (top row) and Kcnj2 (bottom row) expression in scRNA-
seq data in the wildtype (blue) and Sox9 regulatory INV (red) genotypes in 
selected trajectories. For “bone” and “liver”, multiple sub-trajectories were 
pooled to match the tissue labels in the RNAscope data in panel b. Specifically, 
“bone” refers to cells from chondrocyte, osteoblast, and limb mesenchyme 
trajectories, whereas “liver” refers to cells from the liver endothelial and liver 
hepatocyte trajectories. The bars represent singular values represented as a 
fraction of 21128, 6375, 1728 and 229 cells in Bone, Di/telencephalon trajectory, 
Liver and Lung epithelial trajectories, respectively. b, Quantification of Sox9 
and Kcnj2 expression based on RNAscope images of heterozygous E13.5 
wildtype and Sox9 regulatory INV mutant embryos (n = 6 embryos for each 
condition). The mRNA signal was counted in a defined area (1 × 1 mm²). The 
numbers represent p-values of the differences between means calculated using 
a two-sided student t-test. Non-significant p-values (>0.05) not shown. Error 
bars represent standard deviation. c, Gene set enrichment analysis on bone 
cells. Comparison of median ssGSEA65 scores between the Sox9 regulatory INV 
and wild type for Hallmark gene sets66. Gene sets categorised as proliferation 
and immune-signalling66 highlighted in blue and brown. Gene sets manually 
identified to be implicated in chondrogenesis highlighted in red. Note: Bone 
cells include cells from chondrocyte, osteoblast, and limb mesenchyme 
trajectories. Many of the hallmark pathways downregulated in the mutant are 
related to proliferation and chondrocyte differentiation (e.g. mitotic spindle, 
TGF-β signalling, notch signalling, wnt/β-catenin signalling, protein secretion, 
epithelial-to-mesenchymal transition), which are known to be mediated by 
Sox9. Additionally, six of the seven immune-related hallmark pathways were 

upregulated in the mutant, possibly a secondary effect, as to our knowledge 
Sox9 is not established to be involved in immune signalling. d, RNA velocity of 
mesenchymal G4 wildtype and Sox9 regulatory INV cells labelled by sub-
trajectories (top) or genotype (middle) and the corresponding 2D density plots 
split by genotype (bottom). e, Sub-clustering of the limb mesenchyme sub-
trajectory based on cells from pooled wildtype. RNA velocity arrows generated 
using scVelo (Methods) indicate the transition of undifferentiated mesenchyme 
(marked by Meis2, Marcks, Map1b) into perichondrium (Wnt5a,Creb5) and 
condensing mesenchyme (Sox5, Sox6, Sox9) in all wildtype samples67–72.  
f, Marker gene expression used to annotate limb mesenchyme sub-clusters.  
All except Dcc and Tuba1a are literature-based markers of the three cell types. 
Note: Because the annotation of “limb mesenchyme” sub-trajectory was 
propagated forward from earlier stages of development during the creation of 
MOCA, it is possible that other, non-limb mesenchymal populations also 
contribute to this expanded, undifferentiated pool in the Sox9 regulatory INV 
embryos. g, Proportion and the number of cells at different levels of clustering, 
leading up to the four branches of the undifferentiated mesenchyme. h, Density 
plots for UMAP embedding of G4 wildtype and Sox9 regulatory INV cells in the 
limb mesenchymal trajectory (same embedding as Fig. 5e). Dotted lines 
highlight Branch 2 of the undifferentiated mesenchyme, based on the sub-
clustering shown in Fig. 5f. Comparison of the ssGSEA65 scores between the two 
branches of undifferentiated mesenchyme for Sox9 regulatory INV cells for  
(i) cell type signature (C8) and ( j) Hallmark gene sets. Gene sets that are both 
significantly different between the two branches and that have a difference in 
median ssGSEA scores greater than 50 are highlighted in dark grey, and the most 
significantly different gene sets are also labelled. In panel i, all significantly 
different gene sets with names containing “neuro” are highlighted in red.
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Extended Data Fig. 13 | Spatial mapping of the cells of undifferentiated 
mesenchyme onto the Stereo-seq dataset and integration with the sci-space 
dataset. a, Tangram inferred locations of cells from each branch shown in 
Fig. 5f, split by mutant (top) and wildtype (bottom) identity. The colour scale is 
set from 1st percentile to 99th percentile. b, Cells from the Sox9 regulatory INV 
mutant assigned to the undifferentiated mesenchyme were integrated with a 
spatial transcriptomics dataset on mid-gestational mice (E14.5), generated via 

the sci-space method47, in which a subset of transcriptionally profiled nuclei 
have known physical locations in sagittal sections within which they were 
mapped prior to scRNA-seq. We find the nearest neighbour of each Sox9 
regulatory INV mutant cell in sci-space data in the integrated co-embedding, 
and plot the location of the neighbouring sci-space cell where it is known (red 
dots). Red arrows highlight areas with aggregated cells (branch 0 matches with 
the limbs and branch 2 matches to the brain).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software other than Illumina RTA basecalling was used in data collection.

Data analysis The publicly available software used in the paper are described in the Methods section and are cited. These include: sci-RNA-seq3 processing 
pipeline (https://github.com/JunyueC/sci-RNA-seq3_pipeline), bcl2fastq/v2.20, Fiji/v2.13, deML/v1.1 (https://github.com/grenaud/deML), 
trim_galore/v0.6.5, STAR/v2.6.1d, python/v2.7.13, scrublet/v0.1, Seurat/v3, Monocle/v3, uwot/v0.1.8, Seurat/v4.0.6, ggplot2/v3.3.5, 
anndata/v0.7.5.2, escape/v1.6.0, scVelo/v0.2.4, Tangram/v1.0.4. 
The code developed for the paper is made freely available through a public GitHub repository at https://github.com/shendurelab/MMCA.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data generated in this study can be downloaded in raw and processed forms from the NCBI Gene Expression Omnibus under accession number GSE199308. 
Other intermediate data files and an interactive app to explore our dataset is made freely available via https://atlas.gs.washington.edu/mmca_v2/. 
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We did not perform prior explicit calculations for sample size. Sample size was determined by availability of embryos from the crossings. We 
sampled either 50/50 female and male embryos (C57BL/6, BALB/C, FVB) or male only (G4) from the respective genotypes. We included 4 
replicates per genotype of mutants and corresponding wildtypes at the embryonic stage E13.5 in the study. 
For the validation studies, in H&E staining for the Ttc21b mutant we used  wildtype=2,  Ttc21b heterozygous=2, Ttc21b homozygous=4, for 
Gli2 (Pax and Ttr AB staining) we used Gli2-/- homozygous mutant=4 and wildtype=2 and for Sox9Inv mutant RNAscope homozygous=3 and 
wildtype=3 embryos. 

Data exclusions We excluded the embryos 104 and 41 after the quality control step of the analysis from downstream analysis for reasons of low cell number 
and/or quality of the sample. Sample Nr. 70 was lost in transport prior to the start of the experiment. 

Replication For the sci-RNA-seq3 experiment we isolated nuclei from 103 embryos staged E 13.5, 4 replicates each genotype including 22 mutant 
backgrounds and the corresponding 4 WT backgrounds. The attempts at replication were successful.  
For the validation studies, in H&E staining for the Ttc21b mutant we used  wildtype=2,  Ttc21b heterozygous=2, Ttc21b homozygous=4, for 
Gli2 (Pax and Ttr AB staining) we used Gli2-/- homozygous mutant=4 and wildtype=2 and for Sox9Inv mutant RNAscope homozygous=3 and 
wildtype=3 embryos. 

Randomization To minimize batch effects, the nuclei extraction from embryos was randomized. For the first round of indexing, nuclei from each embryo were 
deposited in seperate wells respectively, such that the first index could be linked to the individual embryos isolated from. After the first round 
of indexing, all samples were pooled and distributed randomly across four plates for the second indexing round. 

Blinding Investigators were blinded to group allocation during data collection and analysis: Embryo collection, nuclei isolation, library preparation and 
sci-RNA-seq3 analysis all were performed by different researchers, respectively. 

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies

Antibodies used Mm-Kcnj2 (Cat. No. 476261, Advanced Cell Diagnostics [ACD], Newark, CA, USA) 
Mm-Sox9 (Cat. No. 401051-C2, Advanced Cell Diagnostics [ACD], Newark, CA, USA) 
Prealbumin (Ttr) Antibody ( Cat. No. ab215202, [EPR20971], Abcam) 
Pax6 Antibody ( Cat. No. AB2237, Merck-Sigma) 
Goat Anti-Rabbit Alexa Fluor 488-conjugated secondary antibody (Leica, A-11008)

Validation The RNA scope probes (Mm-Kcnj2, Mm-Sox9) were not further validated for this study. 
The antibodies Pax6 and Prealbumin were tested in different concentrations on the wildtype embryos using DAB (3,3'-
Diaminobenzidin) detection and compared it to literature to ensure specificity of the antibodies. Validation of Antibodies Pax and 
Prealbumin was proceeded with a standardized DAB (3,3'-Diaminobenzidine) validation on adult mouse brain tissues prior to test for 
specificity of the AB's.  DAB staining was followed up with validations using immunofluorescence on adult tissue until proper dilutions 
were found. 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We included mouse mutant and wildtype embryos from the commonly used laboratory strains C57BL/6, BALBC, G4 and FVB at 
embryonic stage E13.5. We sampled either 50/50 female and male embryos (C57BL/6, BALB/C, FVB) or male only (G4) from the 
respective strains. 

Wild animals This study did not include wild animals.

Field-collected samples This study did not include field-collected samples.

Ethics oversight All animal procedures were conducted as approved by the local authorities (LAGeSo Berlin) under license numbers G0243/18 and 
G0176/19. All animal experiments followed relevant guidelines and regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
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Population characteristics information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
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Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).
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Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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