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A single-cell time-lapse of mouse prenatal 
development from gastrula to birth
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Xingfan Huang1,4, Eva K. Nichols1, Megan L. Taylor1,3, Olivia Fulton1, Diana R. O’Day3, 
Anne Roshella Gomes3, Saskia Ilcisin3, Sanjay Srivatsan1,5, Xinxian Deng6, 
Christine M. Disteche6,7, William Stafford Noble1,4, Nobuhiko Hamazaki1,8, Cecilia B. Moens9, 
David Kimelman1,10, Junyue Cao11, Alexander F. Schier12,13, Malte Spielmann14,15,16, 
Stephen A. Murray2, Cole Trapnell1,3,13,17 & Jay Shendure1 ,3,8,13,17 ✉

The house mouse (Mus musculus) is an exceptional model system, combining genetic 
tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 
weeks, during which the genome orchestrates the astonishing transformation of a 
single-cell zygote into a free-living pup composed of more than 500 million cells. 
Here, to establish a global framework for exploring mammalian development, we 
applied optimized single-cell combinatorial indexing3 to profile the transcriptional 
states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals 
spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these 
data, we annotate hundreds of cell types and explore the ontogenesis of the posterior 
embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. 
We leverage the temporal resolution and sampling depth of these whole-embryo 
snapshots, together with published data4–8 from earlier timepoints, to construct a 
rooted tree of cell-type relationships that spans the entirety of prenatal development, 
from zygote to birth. Throughout this tree, we systematically nominate genes 
encoding transcription factors and other proteins as candidate drivers of the in vivo 
differentiation of hundreds of cell types. Remarkably, the most marked temporal 
shifts in cell states are observed within one hour of birth and presumably underlie the 
massive physiological adaptations that must accompany the successful transition of a 
mammalian fetus to life outside the womb.

Since 2017, many studies have applied single-cell methods to char-
acterize biological development at the scale of the whole organ-
ism7–17. Most such studies are time series, in which each embryo is 
analysed at one developmental stage—by profiling of transcription 
via single-cell RNA sequencing (scRNA-seq) or chromatin accessibility 
via single-cell sequencing assay for transposase-accessible chromatin 
(scATAC-seq)—resulting in a series of snapshots that can be pieced 
together, analogous to the single frames that are put together to cre-
ate a film. Inevitably, there are trade-offs between the developmental 
span studied, the temporal resolution and the sampling depth of the 
snapshots taken. For example, 2 studies intensely profiled mouse 
gastrulation, together quantifying gene expression in 150,000 cells 
from more than 500 embryos spanning embryonic day (E)6.5 to E8.57,17, 
and another study profiled 2 million nuclei from 61 embryos span-
ning E9.5–E13.514. We recently integrated such scRNA-seq datasets to 

produce an initial tree of mouse developmental cell states spanning 
E3.5–E13.58. However, early organogenesis was coarsely sampled (with 
24-h intervals), and the remainder of prenatal development remained 
unsampled at the whole-organism scale, limited in part by the sheer 
number of cells.

Ontogenetic staging
To progress towards a more comprehensive, continuous view of tran-
scriptional dynamics throughout prenatal development, we sought 
to deeply sample single nuclei from mouse embryos precisely staged 
at 2- to 6-h intervals spanning late gastrulation (E8) to birth (postnatal 
day (P)0). In staging embryos, we distinguish between gestational age 
and developmental progression. Mouse gestational age, based on the 
observation of a vaginal plug for which noon on that day is declared 
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E0.5, only loosely approximates the time elapsed since conception. 
Stochastic differences in the timing of mating or fertilization, together 
with genetic factors and litter size, can result in significant variation 
among embryos of identical gestational age18. Conversely, embryonic 
morphogenesis is highly ordered, reproducible, and inherently reflec-
tive of an embryo’s developmental age with respect to absolute position 
within a morphogenetic trajectory and the dynamic progression of 
underlying cell states9,19. Therefore, we staged embryos by well-defined 
morphological criteria—for example, somite number and limb bud 
geometry—initially to 45 temporal bins at 6-h increments from E8 
to P0 (Fig. 1a and Extended Data Fig. 1). From a total of 523 embryos 
staged at the Jackson Laboratory, we selected 75 for whole-embryo 
scRNA-seq, targeting 1 embryo for every somite count from 0 to 34 
(2-h increments) and one embryo for every 6-h bin from E10 to P0 (Sup-
plementary Table 1).

Whole-embryo scRNA-seq
Flash-frozen embryos were shipped to the University of Washington, 
where they were pulverized and subjected to an optimized protocol 
for single-nucleus transcriptional profiling by combinatorial indexing3 
(sci-RNA-seq3). Sequencing data were generated across 15 sci-RNA-seq3 
experiments and 21 Illumina Novaseq runs (Supplementary Tables 1  
and 2). In total, 160 billion reads were demultiplexed, trimmed, mapped, 
deduplicated and grouped on the basis of constituent cellular indices. 
Following aggressive filtering of low-quality nuclei and potential dou-
blets, the resulting cell-by-gene count matrix includes transcriptional 
profiles for 11,441,407 nuclei from 74 embryos spanning E8 to P0 (Fig. 1a 
and Extended Data Fig. 2a–f), 1% of which (somite counts 0–12) were 
previously reported8. On average, 154,614 nuclei were profiled per 
embryo (range 1,700 to 1.6 million; Fig. 1a and Supplementary Table 1).

This dataset greatly improves upon our previous single-cell atlas of 
mouse organogenesis14 with respect to sampling depth (from 2 million 
to 11.4 million nuclei), profiling depth (median 671 to 2,545 unique 
molecular identifiers (UMIs) per nucleus), temporal resolution (24-h 
to 2- to 6-h intervals) and developmental span (E9.5–E13.5 to E8–P0). 
In performing quality control, we found that cells from the same or 
adjacent stages but profiled in different experiments were well inte-
grated (Extended Data Fig. 2g–i). Furthermore, principal component 
analysis (PCA) of pseudobulked RNA-sequencing (RNA-seq) profiles 
resulted in a major first component that strongly correlated with devel-
opmental time (PC1 = 77%; Extended Data Fig. 2j). Ambient noise due to 
RNA leakage or barcode swapping was present at low levels (Extended 
Data Fig. 2k).

What kind of ‘shotgun cellular coverage’ of the mouse embryo are we 
achieving? Leveraging total DNA quantification of staged embryos, we 
estimate that the embryo grows 3,000-fold from E8.5 to P0 (210,000 to 
670 million cells), with its cellular doubling time slowing from around 
6 h to 1.5 days (Fig. 1b, Extended Data Fig. 2l,m and Supplementary 
Table 3). Thus, even with the many nuclei profiled here, our cellular 
coverage remains modest, ranging from 0.5-fold for early stages (sum-
ming 6 embryos, somite counts 7–12) to 0.002-fold immediately before 
birth (summing 6 embryos, E17.5–E18.75).

Cell-type annotation
To get our bearings, we used Scanpy20 to generate a global embedding 
of the 11.4 million cell × 24,552 gene count matrix, and annotated 26 
major clusters on the basis of marker genes (Fig. 1b,c and Supplemen-
tary Table 4). As expected, cell clusters whose proportions decline over 
developmental time either stream towards derivatives (for example, 
neuroectoderm and glia to central nervous system (CNS) neurons and 
intermediate neuronal progenitors) or are displaced by functionally 
analogous but developmentally distinct lineages (for example, primi-
tive erythroid to definitive erythroid). However, the resolution of these 
major clusters was somewhat arbitrary and affected by abundance. To 
balance the resolution, we performed another iteration of clustering 
and annotation, resulting in 190 labelled cell types (Extended Data Fig. 3 
and Supplementary Table 5). These annotations are preliminary, and 
we welcome their refinement by the community.

We also performed deeper dives into the ontogenesis of the posterior 
embryo during somitogenesis, kidney, mesenchyme, retina and early 
neurons. These analyses, summarized below, illustrate the richness of 
this dataset and highlight opportunities for its further exploration.

Posterior embryo during somitogenesis
Neuromesodermal progenitors (NMPs) are a population of bipotent 
cells with both neural (spinal cord) and mesodermal (trunk and tail 
somites) derivatives21. Towards extending our previous investiga-
tions of NMP heterogeneity8, we re-embedded 121,118 cells from all 
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Fig. 1 | A single-cell transcriptional time-lapse of mouse development, from 
gastrula to pup. a, Embryos were collected and precisely staged based on 
morphological features, including by counting somite numbers (up to E10) and 
an automated process that leverages limb bud geometry (E10–E15) (Methods). 
Each embryo was assigned to one of 45 temporal bins at 6-h increments from  
E8 to P0, and to more highly resolved 2-h bins at earlier timepoints based on 
somite counts (0–34 somites). The first three bins (E8.0, E8.25 and E8.5) are 
combined. Embryos with somite counts 1, 13 and 19 are missing from the series 
(blue ticks in sub-axis). The number (log2 scale) of nuclei profiled at each 
timepoint, is shown adjacent to the horizontal timeline, for 2-h bins (0–34 
somites) for E8–E10 and for 6-h bins for E8–P0. b, Composition of embryos 
from each 6-h bin by major cell cluster. The y axis is scaled to the estimated cell 
number (log2 scale) at each timepoint. In brief, we isolated and quantified total 
genomic DNA from whole embryos to estimate cell number at 12 stages (1-day 
bins, highlighted by black circles), and then predicted cell number at 43 
timepoints using polynomial regression (Methods). c, Two-dimensional 
uniform manifold approximation and projection (UMAP) visualization of the 
whole dataset. The inset dashed circle shows the same UMAP coloured by 
developmental stage (plotting a uniform number of cells per timepoint). 
Colours and numbers in b,c correspond to the 26 listed major cell cluster 
annotations. Prog., progenitor.
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somite-staged embryos (0–34 somites) initially annotated as NMPs and 
spinal cord progenitors, mesodermal progenitors (Tbx6+), notochord 
or gut (Fig. 2a–c).

First focusing on NMPs and their immediate derivatives (cluster 1 
in Fig. 2a), we performed PCA on highly variable genes. The top three 
principal components, which explain nearly half of transcriptional vari-
ation, appear to correspond to neural versus mesodermal fate (PC1), 
developmental stage (PC2) and bipotentiality versus differentiation 
towards either fate (PC3) (Fig. 2d,e and Supplementary Table 6). Assum-
ing that PC3 tracks differentiation consistently between neural versus 
mesodermal fates, our data suggest that being brachyury-positive 
(T+) and Meis1− may better indicate bipotency than being T+ and Sox2+, 
consistent with recent studies of NMPs’ genetic dependencies22–24 
(Fig. 2e,f). Cyp26a1 (whose gene product inactivates retinoids) and 
Wnt3a (involved in canonical Wnt signalling) were also strongly cor-
related with bipotency.

We observe marked contrasts between earlier (0–12 somites) and 
later (14–34 somites) NMPs, which may correspond to the ‘trunk-to-tail’ 
transition25 (Fig. 2c–f). This observation is consistent with differences 
between NMPs from microdissected E8.5 versus E9.5 embryos26, 
implicating many of the same genes (for example, Cdx1 (early) and 
Hoxa10 (late); Fig. 2d and Supplementary Table 7). However, given 
concern about batch effects, we profiled an additional 12 embryos (8–21 

somites). This new experiment validated and refined the estimated 
timing of this transition (Extended Data Fig. 4a–f).

Another cell type marked by the master transcriptional regulator T is 
the notochord (cluster 2 in Fig. 2a). In 0–12 somite embryos, we observe 
distinct notochordal subsets, one expressing Noto (notochord home-
obox) and another Shh (sonic hedgehog) (Fig. 2g,h). As somitogenesis 
progresses, the inferred derivatives of these subsets remain distinguish-
able. The Noto+ subset is marked by posterior Hox genes, Notch and 
Wnt signalling, and mesodermal differentiation modules (Extended 
Data Fig. 4g). Within this subset, we identify a few cells that strongly 
express Foxj1 and motile ciliogenesis genes. These ciliated nodal cells, 
which set the left-right axis27, are both extremely rare and transient, 
peaking at the 2-somite stage (Fig. 2g,h and Extended Data Fig. 4h).

By contrast, the inferred derivatives of the Shh+ subset express genes 
involved in neurogenesis and synaptogenesis—for example, Sox10, 
Bmp3, Nrg1 and Erbb4 (Extended Data Fig. 4i). We speculate that the 
Noto+ subset corresponds to posterior notochord, arising from the 
node, whereas the Shh+ subset corresponds to anterior mesendoderm 
(that is, anterior head process and possibly prechordal plate), arising 
by condensation of dispersed mesenchyme and possibly contributing 
to forebrain patterning28–31. These presumably anterior–posterior dif-
ferences are a major source of notochordal heterogeneity (PC1 = 29%; 
Supplementary Table 8).
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Fig. 2 | Transcriptional heterogeneity in the posterior embryo during early 
somitogenesis. a, Re-embedded 3D UMAP of 121,118 cells from selected 
posterior embryonic cell types at early somitogenesis (somite counts 0–34; 
E8–E10). Three clusters are identified. b, The same UMAP as in a, coloured by 
somite counts. c, Re-embedded 2D UMAP of cells from cluster 1. d, The same 
UMAP as in c, coloured by marker gene expression for NMP subpopulations 
(Supplementary Table 12). Exp, expression. e, 3D visualization of the top three 
principal components of gene expression variation in cluster 1. Correlations 
between top three principal components and the normalized expression of 
selected genes (left) or somite counts (bottom). f, The same UMAP as in c, with 
earlier (n = 4,949 cells) and later (n = 3,910 cells) NMPs highlighted. NMPs: T+, 
(raw count ≥ 5) and Meis1− (raw count = 0). g, Re-embedded 2D UMAP of cells 
from cluster 2. h, The same UMAP as in g, coloured by marker gene expression 

for notochord or ciliated nodal cells (Foxj1+). i, Re-embedded 2D UMAP of cells 
from cluster 3. Black circles highlight gut cell subpopulations. j, The same 
UMAP as in i, coloured by marker gene expression for gut cell subpopulations 
(Supplementary Table 12). k, Left, Pearson correlation (corr.) with PC1 of 
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Wnt signalling genes versus PC1 of notochord or gut. l, Left, fold changes 
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(several MYC targets, Lin28a and Hsp90aa1) versus early and late NMPs or PC2 
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Turning to gut (cluster 3 in Fig. 2a), we again observe distinct progeni-
tor subsets that transition to a continuum as somitogenesis progresses 
(Fig. 2i). A major aspect of this continuum also reflects anterior–pos-
terior patterning, with subsets corresponding to lung, liver, pancreas, 
foregut, midgut and hindgut progenitors (PC1 = 20%; Fig. 2j and Sup-
plementary Table 9). As T is classically associated with notochord and 
posterior mesoderm, we were initially surprised by strong T expression 
in the putative posterior hindgut, coincident with posterior Hox genes 
(Extended Data Fig. 4j). However, this pattern has been documented32, 
and is consistent with the ancestral role of T in closing the blastopore33 
as well as hindgut defects in Drosophila brachyenteron and Caenorhab-
ditis elegans mab-9 mutants34,35.

Of note, there is strong overlap between genes underlying the 
inferred anterior–posterior axis of axial mesoderm (notochord; PC1; 
n = 591) and endoderm (gut; PC1; n = 502) (198 overlapping genes, 86% 
directionally concordant; P < 10−28, χ2-test; Fig. 2k and Supplemen-
tary Table 10). Concordantly posterior-associated genes are highly 
enriched for Wnt signalling and posterior Hox genes. One model to 
explain these overlaps between germ layers is that they are residual to 
the common origin of anterior mesendodermal derivatives from early 
and mid-gastrula organizers (anterior head process, prechordal plate 
and anterior endoderm) versus posterior mesendodermal derivatives 
from the node28 (notochord and posterior endoderm). Alternatively, 
they could be explained by physically coincident progenitors of these 
germ layers being exposed to similar patterns of Wnt signalling.

A second overlap between germ layers involves genes correlated 
with early versus late somite counts in NMPs (n = 257) versus gut (PC2; 
n = 502) (82 overlapping genes, 70 (85%) directionally concordant; 
P < 10−15, χ2-test) (Fig. 2l and Supplementary Table 11). Given concern 
about batch effects, we re-examined the aforementioned replication 
series (8–21 somite embryos). Seventy-seven per cent of the overlap-
ping, concordant genes replicated in terms of directionality-of-change 
between early versus late NMPs and gut (54 out of 70; expected value 
25%; Extended Data Fig. 4a–f). Genes reproducibly associated with 
early stages in both germ layers were strongly enriched for MYC targets, 
and included Lin28a, a deeply conserved regulator of developmental 
timing36. Other genes, such as Npm1 and Hsp90 isoforms are plausibly 

associated with batch effects. However, analysis of a module of genes 
correlated with Npm1 revealed that this module declined with develop-
mental time across the entire time series, rather than being correlated 
with batch variables (Extended Data Fig. 4k,l).

Intermediate and lateral plate mesoderm
Above, we investigated aspects of axial and paraxial mesoderm, which 
give rise to notochord and somites, respectively. Next, we focus on the 
transition from intermediate mesoderm to nephrons, and lateral plate 
mesoderm (LPM) to organ-specific mesenchyme.

Our aim was to explore the continuum of transcriptional states 
that span the transition from intermediate mesoderm to functional 
nephrons. Re-embedding 95,226 relevant cells, we observe two 
major trajectories, one corresponding to posterior intermediate 
mesoderm→renal tubules, and another corresponding to anterior 
intermediate mesoderm→collecting ducts (Fig. 3a–c). In late gastrula-
tion, posterior (Gdnf+) and anterior (Ret+) intermediate mesoderm37,38 
initially progress to metanephric mesenchyme and ureteric bud states, 
respectively, then onwards to functional components of the nephron 
(Extended Data Fig. 5a–c). Cells annotated as podocytes and proximal 
tubule cells but unexpectedly appearing as early as E10.5 may cor-
respond to mesonephric tubules37. Metanephric mesenchyme and 
ureteric bud states persist through P0, presumably reflecting ongo-
ing nephrogenesis, which continues for a few days after birth39. The 
apparent bifurcation of proximal tubule cell states at later stages cor-
responds to major differences in cells obtained before versus after birth 
(Extended Data Fig. 5d). We return to this observation further below.

Both tip and stalk cells are identified within the ureteric bud—the tip 
cells giving rise to the collecting duct, and the stalk cells giving to the 
ureter40,41 (Extended Data Fig. 5e). Notably, we observe transcriptional 
‘convergence’ of the posterior and anterior trajectories in collecting 
duct intercalated cells (cluster 4 in Fig. 3a,b). More detailed investiga-
tion supports a contribution of the posterior trajectory to the collecting 
duct, consistent with recent lineage tracing experiments demonstrat-
ing a dual origin for intercalated cell types from distal nephron and 
ureteric lineages42 (Fig. 3c and Extended Data Fig. 5f–h).
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The LPM is considerably more complex than the axial, paraxial and 
intermediate mesoderms43. Although some LPM derivatives have been 
intensely studied (for example, limb and heart), others remain poorly 
understood, in particular the mesoderm lining the body wall and inter-
nal organs. This aspect of LPM gives rise to a remarkable diversity of cell 
types and structures (including fibroblasts, smooth muscle, mesothe-
lium, pericardium, adrenal cortex and others) and its reciprocal inter-
actions with other germ layers has a key role in organ patterning44,45.

To annotate understudied LPM derivatives, we leveraged spatial tran-
scriptomic data to impute coordinates for our cells46,47, which enabled 
us to annotate 22 subtypes of the LPM and intermediate mesoderm 
major cluster, including cardiac (proepicardium), brain (meninges), 
lung, liver, foregut and gut mesenchyme, and airway versus gastro-
intestinal versus vascular smooth muscle (Fig. 3d,e, Extended Data 
Fig. 6 and Supplementary Table 12). Two subtypes spatially mapped 
to the kidney, one to the cortex and the other heterogeneously, which 
we term renal cortical stromal cells and renal medullary stromal cells, 
respectively48 (Fig. 3d,e and Extended Data Fig. 7a–c). Although both 
express Foxd1+, focused analyses suggest distinct origins, with renal 
cortical stromal cells appearing to derive from the intermediate meso-
derm and metanephric mesenchyme, and renal medullary stromal cells 
appearing to derive from LPM (Extended Data Fig. 7d,e). However, 
lineage tracing experiments would be necessary to provide conclu-
sive evidence for this. Of note, renal medullary stromal cells exhibited 
heterogeneity along what may be a cortical–medullary spatial axis 
(Extended Data Fig. 7f).

The temporal resolution of our studies enables us to narrow the 
window during which various organ-specific mesenchymes are 
specified (Extended Data Fig. 8a). We also applied a mutual nearest 
neighbours (MNN) heuristic to identify putative precursors of each 
subtype (Extended Data Fig. 8b–g)—for example, subsets of splanchnic 
mesoderm most highly related to foregut mesenchyme, hepatic mes-
enchyme or proepicardium—which may correspond to the ‘territories’ 
in which these organ-specific mesenchymes are induced (Extended 
Data Fig. 8b–d). For example, hepatic and foregut mesenchyme are 
distinguished both from one another as well as from their inferred 
progenitors by Gata4 and Barx1 expression, respectively49,50. However, 
their inferred progenitors are also distinct from one another, with 
inferred hepatic mesenchymal progenitors expressing a programme 
of epithelial–mesenchymal transition and inferred foregut mesen-
chymal progenitors expressing multiple guidance cue programmes 
(for example, semaphorins, ephrins, SLIT family proteins and netrins) 
(Extended Data Fig. 8c and Supplementary Table 13).

From patterned neuroectoderm to neurons
We now turn from mesoderm to neuroectoderm. Relative to our previ-
ous studies14, optimizations of sci-RNA-seq3 have markedly improved 
our ability to distinguish neuronal subtypes. For example, in Supple-
mentary Note 1, we describe the timing and trajectories of prenatal 
diversification of the retina. In that context, we can distinguish 15 retinal 
ganglion subtypes by P0, on par with expectation51, each well defined 
by specific transcription factor combinations (Extended Data Fig. 9a–l 
and Supplementary Table 14).

In our earliest embryos (0–12 somites), we previously defined a con-
tinuum of cell states that correlated with anatomical patterning of the 
‘pre-neurogenesis’ neuroectoderm8. Extending this analysis through 
early organogenesis (E8–E13), we observe clusters corresponding to 
territories that will give rise to the major regions of the mammalian 
brain (Fig. 4a and Extended Data Fig. 9m). As development unfolds 
further, we observe many trajectories of neurogenesis arising from 
these inferred territories (Fig. 4b,c).

Beginning as early as the 16-somite stage, most neuronal diversity 
derives from direct neurogenesis (Fig. 4d), including motor neurons, 
cerebellar Purkinje cells, Cajal–Retzius cells and many other subtypes 

(CNS neurons sub-panel of Extended Data Fig. 3). Indirect neurogen-
esis52 has a later start, with intermediate neuronal progenitors first 
detected at E10.25, later giving rise to deep-layer neurons, upper-layer 
neurons, subplate neurons, and cortical interneurons (Fig. 4d and 
Extended Data Fig. 10a,b). Although many subtypes deriving from 
direct neurogenesis are easily distinguished, the majority (55%) of 
these 2.1 million cells could initially only be coarsely annotated as glu-
tamatergic or GABAergic (γ-aminobutyric acid-producing) neurons 
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or dorsal or ventral spinal cord progenitors. To leverage the greater 
heterogeneity evident at early stages as these trajectories ‘launch’ 
from the patterned neuroectoderm, we re-analysed the pre-E13 subset. 
This facilitated much more granular annotation, while also highlight-
ing sources of heterogeneity—for example, anterior versus posterior 
or inhibitory versus excitatory (Fig. 4e, Extended Data Fig. 10c,d and 
Supplementary Table 12).

Among these more refined annotations of direct neurogenesis 
derivatives were 11 spinal interneuron subtypes; similar to retinal 
ganglion subtypes, these were well defined by transcription factor 
combinations53 (Fig. 4f and Supplementary Table 15). The top prin-
cipal components of transcriptional heterogeneity among spinal 
interneurons appear to correspond to neuronal differentiation (PC1 
and PC2), glutamatergic versus GABAergic identity (PC3), and dorsal 
versus ventral identity (PC4) (PC1–4 (50%); Extended Data Fig. 10e,f 
and Supplementary Table 16).

We next sought to infer the progenitors from which various neu-
ronal and non-neuronal cell types derive. First, we took pre-E13 cells 
annotated as astrocytes, choroid plexus or any direct or indirect neuro-
genesis derivative, and co-embedded them with cells of the patterned 
neuroectoderm. Next, for each derivative cell type in the co-embedding, 
we selected the 500 ‘youngest’ cells, identified their patterned neuroe-
ctoderm MNNs and then mapped these back to our original embedding 
of patterned neuroectoderm (Fig. 4g,h). The resulting distribution of 
inferred progenitors is considerably more granular than our annota-
tions of anatomical territories (compare Fig. 4h with Fig. 4a).

For non-neuronal subtypes, the inferred progenitors of the choroid 
plexus overwhelmingly map to the anterior roof plate (91%), with a 
minor subset in the dorsal diencephalon (5%), although this balance is 
likely impacted by the time window of this analysis54 (E8–E13). Inferred 
astrocyte progenitors exhibit a more complex distribution, with VA2 
progenitors primarily assigned to the spinal cord, r7 and r8 (83%) and 
hindbrain (16%), and VA3 progenitors to the spinal cord, r7 and r8 (57%) 
and floorplate and p3 domain55 (32%) (Extended Data Fig. 10g–j). VA1 
astrocytes arise later than VA2 and VA3 astrocytes, and were not present 
in sufficient numbers for their progenitors to be inferred.

For neuronal subtypes, inferred progenitors largely fall within the 
expected territories, but with considerable granularity (Fig. 4h). For 
example, inferred progenitors of dorsal and ventral spinal interneurons 
cluster distinctly. Although the progenitors of three neuronal subtypes 
(cerebellar Purkinje neurons, precerebellar neurons and spinal dI6 
interneurons) were not clearly defined by the method described above, 
an iterative variant of the MNN heuristic suggested that cerebellar 
Purkinje neurons and dl2 spinal interneurons have common or at least 
transcriptionally similar progenitors, which may have confounded the 
original analysis (Extended Data Fig. 10k).

We next examined how the identities of neuronal subtypes are estab-
lished and maintained56. We identified transcription factors specific 
to each of the 11 spinal interneuron subtypes (median 53 per subtype; 
Fig. 4f and Supplementary Table 15). However, within each subtype, 
these transcription factors exhibit complex temporal dynamics, with 
most only expressed transiently (Extended Data Fig. 10l). Focusing on 
spinal interneurons dl1–dl5, we could also identify transcription fac-
tors specific to the inferred progenitors of each subtype, relative to the 
inferred progenitors of other dorsal spinal interneurons (Extended Data 
Fig. 10m, left). Most of these were basic helix–loop–helix or homeo-
domain transcription factors57. However, consistent with the transi-
tional expression of other subtype-specific transcription factors, their 
expression was generally not maintained for very long after neuronal 
specification (Extended Data Fig. 10m, right).

Finally, we sought to systematically delineate the timing of differen-
tiation (Extended Data Fig. 10n). This analysis suggests that the emer-
gence of each derivative cell type from the patterned neuroectoderm 
is both cell-type-specific and modestly asynchronous. For example, 
about 95% of inferred progenitors of dl2 spinal interneurons are from 

20-somite to E11 stage embryos, whereas 95% of dl4 spinal interneu-
rons inferred progenitors are from 27-somite to E11.75 stage embryos.

Together, these analyses are consistent with a model articulated by 
Sagner and Briscoe56 in which both spatial and temporal factors heavily 
contribute to the specification of neuronal subtypes as they emerge 
from the patterned neuroectoderm. Furthermore, they highlight the 
complexity of this process not only at the initiation of each neuronal 
subtype, but also over the course of their early maturation—for exam-
ple, at 6-h resolution, we can observe each spinal interneuron subtype 
expressing a dynamic succession of developmentally potent transcrip-
tion factors (Extended Data Fig. 10l).

A cell-type tree from zygote to birth
A primary objective of developmental biology is to delineate the line-
age relationships among cell types. Transcriptional profiles of single 
cells do not explicitly contain lineage information. However, assuming 
that a continuity of transcriptional states spans all cell-type transitions, 
we can envision a tree accurately relating cell types based solely on 
scRNA-seq data58. Indeed, we and others have constructed such trees 
for portions of worm, fly, fish, frog and mouse development7,9–14,17.

On the basis of these learnings, we constructed a rooted tree of cell 
types that spans mouse development from zygote to birth, based on 
four published datasets4–7 (110,000 cells; E0–E8.5) and the dataset 
reported here (11.4 million cells; E8–P0) (Supplementary Table 17). 
Challenges included the heterogeneity of technologies used to generate 
the data, that cells’ transcriptional states are only loosely synchronized 
with developmental time, the multiple scenarios by which cell state 
manifolds may be misleading58, and finally, the sheer complexity of this 
organism. To overcome these challenges, we took a heuristic approach.

First, we split cells into 14 subsystems to be separately analysed 
and subsequently integrated (pre-gastrulation, gastrulation, and 12 
organogenesis and fetal subsystems; Supplementary Tables 17 and 18).

Second, dimensionality reduction was performed on each subsystem 
and 283 cell-type nodes were defined, largely but not entirely corre-
sponding to our original cell-type annotations (Supplementary Table 19 
and 20). The cells comprising each node derived from a single data 
source, but usually from multiple timepoints within that data source.

Third, we sought to draw edges between nodes (Fig. 5a–f). Within 
each subsystem, we identified pairs of cells that were MNNs in 
30-dimensional PCA space. Although the overwhelming majority of 
MNNs occurred within nodes, some MNNs spanned nodes, presumably 
enriched for bona fide cell-type transitions. Each possible edge (that is, 
node pair) was ranked based on a normalized count of inter-node MNNs 
(Supplementary Table 21). The MNN approach is robust to technical 
factors or parameter choices (Extended Data Fig. 11a–c and Supple-
mentary Note 2).

Fourth, we manually curated the top 1,155 candidate edges for bio-
logical plausibility (Extended Data Fig. 11d), leaving 452 edges, which 
we further categorized as likely reflecting ‘developmental progression’ 
or ‘spatial continuity’ (Supplementary Table 22). Notably, where nodes 
were connected to multiple other nodes, distinct subsets of cells were 
generally involved in each edge, and inter-node MNN pairs exhibited 
temporal coincidence (Fig. 5a–f). As only a handful of cells were profiled 
in the pre-gastrulation subsystem, its edges were added manually.

Finally, to bridge subsystems, we performed batch correction and 
co-embedding of selected timepoints from different data sources, 
resulting in a third category of ‘dataset equivalence’ edges (Extended 
Data Fig. 11e–h). Ten of the organogenesis and fetal development sub-
systems could be linked to equivalent cell-type nodes in the gastrula-
tion subsystem in a data-driven manner, and two required edges to be 
manually added based on biological plausibility. Altogether, we added 
55 inter-subsystem edges.

The resulting developmental cell-type tree, spanning E0 to P0, can 
be represented as a rooted, directed graph (Fig. 5g).
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Key drivers of cell-type transitions
We next sought to test which transcription factors or other genes 
sharply change in expression with the emergence of each cell type. 

First, for each directional cell-type transition edge between two nodes 
in the graph (A→B), we identified both ‘inter-node’ MNNs, as well as 
‘intra-node’ MNNs of the inter-node MNNs. Rather than considering 
the entirety of A versus B, this heuristic focuses our attention on the 
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64 - Parathyroid epithelial cells

Pre-gastrulation
Gastrulation
Blood
Brain and spinal cord
Endothelium
Epithelial cells
Eye

Gut
Lateral plate mesoderm
Mesoderm
Notochord
PNS glia
PNS neurons
Kidney

65 - Pineal gland
66 - Pituitary gland cells
67 - Apical ectodermal ridge
68 - Pituitary/pineal gland prog.
69 - Placodal area
70 - Pre-epidermal keratinocytes
71 - Thymic epithelial cells
72 - Thyroid gland cells
73 - Tooth junctional epithelium
74 - Basal keratinocytes
75 - Bladder urothelial cells
76 - Branchial arch epithelium
77 - Cochlear hair cells
78 - Conjunctival goblet cells

  79 - Corneal epithelial cells
  80 - Dental epithelial cells
  81 - Amacrine cells
  82 - Naive retinal prog. cells
  83 - Optic stalk
  84 - Photoreceptor precursor cells
  85 - PV-containing retinal ganglion cells
  86 - Retinal ganglion cells
  87 - Retinal pigment cells
  88 - Retinal prog. cells
  89 - Rod precursor cells
  90 - Suprachiasmatic nucleus
  91 - Amacrine/horizontal precursor cells
  92 - Bipolar precursor cells
  93 - Cholinergic amacrine cells
  94 - Ciliary margin cells
  95 - Cone precursor cells
  96 - Eye �eld
  97 - Horizontal cells
  98 - Iris pigment epithelium
  99 - Airway club cells
100 - Intestinal enteroendocrine cells
101 - Intestinal goblet cells
102 - Lung cells (Eln+)
103 - Lung prog. cells
104 - Midgut/hindgut epithelial cells
105 - Pancreatic acinar cells
106 - Pancreatic islets
107 - Airway goblet cells
108 - Alveolar type 1 cells
109 - Alveolar type 2 cells
110 - Biliary epithelial cells
111 - Foregut epithelial cells
112 - Hepatocytes
113 - Melanocyte cells
114 - Myelinating Schwann cells
115 - Myelinating Schwann cells (Tgfb2+)

116 - Neural crest (PNS glia)
117 - Olfactory ensheathing cells
118 - Satellite glial cells
119 - Corticofugal neurons
120 - Dorsal root ganglion neurons
121 - Enteric neurons
122 - Neural crest (PNS neurons)
123 - Olfactory sensory neurons
124 - Otic sensory neurons
125 - Parasympathetic neurons
126 - Sympathetic neurons
127 - Anterior intermediate mesoderm
128 - Posterior intermediate mesoderm
129 - Proximal tubule cells
130 - Renal cortical stromal cells
131 - Ureteric bud
132 - Ureteric bud stalk
133 - Ascending loop of Henle
134 - Collecting duct intercalated cells
135 - Collecting duct principal cells
136 - Connecting tubule
137 - Distal convoluted tubule
138 - Metanephric mesenchyme
139 - Nephron prog.
140 - Podocytes
141 - Adrenocortical cells
142 - Gastrointestinal SMCs
143 - Gonad prog. cells
144 - Granulosa cells
145 - Hepatic mesenchyme
146 - Leydig cells
147 - Limb mesenchyme prog.
148 - Lung mesenchyme
149 - Meninges
150 - Mesothelial cells
151 - Airway SMCs
152 - Proepicardium

153 - Renal medullary stromal cells
154 - Second heart �eld
155 - Sertoli cells
156 - Somatic mesoderm
157 - Splanchnic mesoderm
158 - Vascular SMCs
159 - Vascular SMCs (Pparg+)
160 - Ventricular cardiomyocytes
161 - Atrial cardiomyocytes
162 - First heart �eld
163 - Foregut mesenchyme
164 - Activated T cells
165 - Granulocytes
166 - Haematopoietic stem cells (Cd34+)
167 - Haematopoietic stem cells (Mpo+)
168 - Kupffer cells
169 - Mast cells
170 - Megakaryocyte-erythroid prog.
171 - Megakaryocytes
172 - Microglia
173 - Monocytes
174 - Monocytic MDSCs
175 - Adipose tissue macrophages
176 - Natural killer cells
177 - Osteoclasts
178 - Plasmacytoid dendritic cells
179 - PMN MDSCs
180 - Regulatory T cells
181 - T cells
182 - T-NK prog.
183 - B cell prog.
184 - B cells
185 - Border-associated macrophages
186 - Border-associated macrophages (Ms4a8a+)
187 - Conventional dendritic cells
188 - De�nitive early erythroblasts (Cd36–)
189 - De�nitive erythroblasts (Cd36+)

190 - Anterior �oor plate
191 - Cranial motor neurons
192 - Deep-layer neurons
193 - Di/mesencephalon GABAergic neurons
194 - Di/mesencephalon glutamatergic neurons
195 - Diencephalon
196 - Dorsal telencephalon
197 - Ependymal cells
198 - GABAergic cortical interneurons
199 - GABAergic neurons (>E13.0)
200 - Glutamatergic neurons (>E13.0)
201 - Anterior roof plate
202 - Hypothalamic Sim1 neurons
203 - Hypothalamus
204 - Hypothalamus (Sim1+)
205 - Intermediate neuronal prog.
206 - Midbrain dopaminergic neurons
207 - Midbrain-hindbrain boundary
208 - Multiciliated ependymal cells
209 - Neural prog. cells (Neurod1+)
210 - Astrocytes
211 - Neural prog. cells (Ror1+)
212 - NMPs and spinal cord prog.
213 - Neurons (Slc17a8+)
214 - Oligodendrocyte prog. cells
215 - Floorplate and p3 domain
216 - Posterior roof plate
217 - Precerebellar neurons
218 - Spinal cord dorsal prog. (>E13.0)
219 - Spinal cord motor neurons
220 - Spinal cord ventral prog. (>E13.0)
221 - Cajal–Retzius cells
222 - Spinal cord/r7/r8
223 - Spinal dI1 interneurons
224 - Spinal dI2 interneurons
225 - Spinal dI3 interneurons
226 - Spinal dI4 interneurons

227 - Spinal dI5 interneurons
228 - Spinal dI6 interneurons
229 - Spinal V0 interneurons
230 - Spinal V1 interneurons
231 - Spinal V2a interneurons
232 - Cerebellar Purkinje cells
233 - Spinal V2b interneurons
234 - Spinal V3 interneurons
235 - Striatal projection neurons
236 - Subplate neurons
237 - Telencephalon
238 - Thalamic neuronal precursors
239 - Upper-layer neurons
240 - Cerebellum-related cells
241 - Choroid plexus
242 - Committed oligodendrocyte precursors
243 - Cortical Interneurons (Prox1+)
244 - Adipocyte cells (Cyp2e1+)
245 - Fibroblasts
246 - Mesodermal prog. (Tbx6+)
247 - Muscle prog. cells
248 - Muscle prog. cells (Prdm1+)
249 - Myoblasts
250 - Myo�broblasts
251 - Myotubes
252 - Pre-osteoblasts (Sp7+)
253 - Sclerotome
254 - Adipocyte prog. cells
255 - Brown adipocyte cells
256 - Chondrocytes (Atp1a2+)
257 - Chondrocytes (Otor+)
258 - Dermatome
259 - Dermomyotome
260 - Early chondrocytes
261 - Facial mesenchyme
262 - Ciliated nodal cells
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Fig. 5 | A data-driven tree relating cell types throughout mouse development, 
from zygote to pup. a, Illustration of the basis for the edge inference heuristic. 
Re-embedded 2D UMAP of 101,001 cells from Cd34+ HSCs, Mpo+ HSCs, monocytic 
myeloid-derived suppressor cells (MDSCs) and PMN MDSCs within the ‘blood’ 
subsystem. Cells involved in MNN pairs that bridge cell types are coloured.  
b, Inferred lineage relationships between annotated cell types in a, with 
corresponding colour scheme. c, The percentage of inter-cell-type MNN cells  
( y axis) versus the total number of cells profiled from embryos from the 
corresponding time bin, with colour scheme as in a,b. d, Additional illustration  
of the basis for the edge inference heuristic. Re-embedded 2D UMAP of 71,718 
cells from gut, lung progenitor cells and alveolar type 2 cells within the ‘gut’ 

subsystem. Cells involved in MNN pairs that bridge cell types are coloured.  
e, Inferred lineage relationships between annotated cell types in d, with 
corresponding colour scheme. f, The percentage of inter-cell-type MNN cells  
( y axis) versus the total number of cells profiled from embryos from the 
corresponding time bin, with colour scheme as in d,e. g, A rooted, directed graph 
corresponding to development of a mouse, spanning E0 to P0 (Methods). For 
presentation purposes, we removed most ‘spatial continuity’ edges and merged 
nodes with redundant labels derived from different datasets, resulting in a 
rooted graph comprising 262 cell-type nodes and 338 edges. Nodes are coloured 
and labelled by each of the 14 subsystems. CLE, caudal lateral epiblast; ExE, 
extra-embryonic; NK-T cell, natural killer T cell; PV, parvalbumin.
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cells most proximate to each cell-type transition (groups 1→2→3→4 in 
Extended Data Fig. 11i,j). Next, we identified differentially expressed 
transcription factors (DETFs) and differentially expressed genes 
(DEGs) across each phase of the modelled transition—that is, early 
(1→2), inter-node (2→3) and late (3→4). Notably, the early phase is within 
node A, which may facilitate identification of changes that precede the 
A→B transition itself.

We applied this heuristic to 436 edges of the rooted tree shown in 
Fig. 5g, nominating ranked lists of median 28 (IQR 12–51) DETFs and 
171 (IQR 76–389) DEGs per edge (Supplementary Tables 23 and 24). 
Most genes were nominated for only one or a few edges, with outliers 
that may have more general roles in cell-type specification (Extended 
Data Fig. 11k,l). Many of the top-ranked upregulated DETFs for the 
early phase of a transition correspond to an established driver of the 
derivative cell type (for example, Mitf for melanocytes, Ebf1 and Pax5 
for B cell progenitors, Lef1 for B cells and Zfpm1 for megakaryocyte–
erythroid progenitors). We also nominated potentially novel drivers 
that warrant further investigation (including Tcf7l2 for Kupffer cells, 
Ltf for monocytic myeloid-derived suppressor cells, Esrrg for dor-
sal telencephalon-derived choroid plexus, Zfp536 for myelinating 
Schwann cells and Rreb1 for adipocyte progenitors) (Supplementary 
Table 23).

Digging into a well-studied transition, Sox17 is the sole upregulated 
DETF during the early phase of the anterior primitive streak→definitive 
endoderm transition, whereas other transcription factors (Elf3, Sall4, 
Hesx1, Lin28a, Hmga1 and Ovol2, but not Sox17) are upregulated during 
the transition itself (Supplementary Table 23). Non-transcription factor 
DEGs specific to the early phase of this transition include Cer1, ADP/ATP 
translocase 1 (Slc25a4) and Slc2a3 (also known as Glut3) (Supplementary 
Table 24). To examine this further, we subjected all cells participating 
in groups 1–4 of this transition to conventional pseudotime analysis14. 
This analysis supported the upregulation of Sox17 as preceding other 
nominated transcription factors, and further highlighted Cer1 as the 
only non-transcription factor DEG with Sox17-like kinetics (Extended 
Data Fig. 11m,n).

A more complex example involves Cd34+ haemopoietic stem cells 
(HSCs), which in the graph are the origin of a dozen cell types (Extended 
Data Fig. 11o). Notably, although Cd34+ HSCs constitute a single node, 
the cells composing this node are very heterogeneous, with distinct 
subsets participating in the MNN pairs that support edges to various 
lymphoid, myeloid and erythroid derivatives (Extended Data Fig. 11p,q). 
Correspondingly, the heuristic nominates different transcription fac-
tors as early regulators of each transition—for example, Ebf1 for B cells 
and Id2 and Nfatc2 for conventional dendritic cells (Extended Data 
Fig. 11r).

Marked changes immediately after birth
As touched on above, we anecdotally noticed that proximal tubule 
cells deriving from P0 pups were unusually well-separated from those 
deriving from late-stage fetuses (Extended Data Fig. 5d). A similar phe-
nomenon was noted for hepatocytes, adipocytes, and various lungs 
and airway cell types (Fig. 6a). This contrasts sharply with the bulk of 
the time-lapse, in which cells of a given type were overwhelmingly well 
mixed across adjacent timepoints. Concerned this was due to batch 
effects or the pitfalls of over-interpreting UMAPs59, we conducted a 
timepoint correlation analysis, testing for each cell type whether the 
k-nearest neighbours of cells of a given timepoint were derived from the 
same or different timepoints. In this framing, a low proportion of neigh-
bours from different timepoints suggests a temporally abrupt change in 
transcriptional state. For nearly all cell types, P0 cells exhibited a lower 
proportion for this metric than all other timepoints (Fig. 6b). Although 
a trivial explanation would be a longer interval between E18.75 and P0 
than 6 h, the pattern was highly non-uniform across cell types, with 
extreme examples including the aforementioned cell types as well as 

various endothelial and blood lineages. In sharp contrast, P0 cells from 
most neuronal cell types were relatively well mixed with cells deriving 
from earlier timepoints.

To validate this phenomenon, we collected nine pups from a single lit-
ter. Three were delivered vaginally, and the remaining six by caesarean 
section (C-section) and euthanized either immediately (2 pups), or after 
20, 40, 60 or 80 min (1 pup each) (Fig. 6c and Extended Data Fig. 12a). 
Nuclei from these nine pups were analysed in a new sci-RNA-seq3 experi-
ment, which yielded nearly one million additional single-cell profiles 
(Extended Data Fig. 12b and Supplementary Tables 1 and 2).

We applied timepoint correlation analysis to 24 major cell clusters 
identified in the 6 C-section embryos, as above except treating time 
after C-section as a continuous variable. Once again, hepatocyte, 
adipocyte and lung and airway cells were major outliers, validating 
our initial finding and narrowing the window in which these abrupt 
changes emerge to the first hour of extrauterine life (Fig. 6d,e and 
Extended Data Fig. 12c,d). Although we cannot fully rule out techni-
cal artefacts, we took care to minimize handling and stress prior to 
euthanasia and immediate snap freezing. Furthermore, it is plausible 
that rapid changes in transcriptional programmes might be physi-
ologically necessary owing to the profound differences between the 
placental and extrauterine environments. In examining DEGs of rapidly 
changing cell types, either in E18.75 versus P0 embryos or across the 
C-section time series, we see clues that support this interpretation 
(Supplementary Tables 25 and 26).

For example, in hepatocytes, genes involved in gluconeogenesis are 
sharply upregulated, including Ppargc1a, which encodes PGC-1α, a 
master regulator of hepatic gluconeogenesis, as well as Pck1, G6Pc and 
Got1, which encode key enzymes in this pathway (Fig. 6f). Aspects of 
these changes have previously been linked to changes in key nutritional 
hormones immediately after birth and are presumably necessary for 
maintaining normoglycaemia in the wake of being abruptly cut off from 
maternal nutrients60. In brown adipocytes, we observe sharp upregu-
lation of Irf4, a cold-induced master regulator of thermogenesis, and 
again of Ppargc1a, which in adipocytes has a different role than in the 
liver, as PGC-1α partners with IRF4 to drive the expression of Ucp1 and 
uncoupled respiration61, presumably to maintain body temperature 
upon transition to the extrauterine environment62 (Fig. 6f).

The time elapsed between vaginal births and the collection of pups 
was not precisely captured in the replication experiment. However, on 
co-embedding cells derived from vaginally birthed pups with those 
delivered by C-section for the three most relevant major cell clusters, 
timepoint correlation analysis suggested they were collected within 
1 h of birth (Extended Data Fig. 12e). However, this assumes similar 
kinetics for these rapid transcriptional changes in C-section versus 
vaginally delivered pups. On more detailed inspection, the patterns 
are considerably more complex, with certain clusters appearing to 
be specific to vaginally birthed pups (Extended Data Fig. 12f and Sup-
plementary Table 27).

Discussion
We profiled the transcriptional states of 12.4 million nuclei from 83 pre-
cisely staged embryos spanning late gastrulation (E8) to birth (P0), with 
2-h temporal resolution during somitogenesis, 6-h resolution to birth, 
and 20-min resolution immediately postpartum. Despite the scale of the 
study, the project was driven by a small number of individuals, and not 
a formal production team. All embryo staging was performed by I.C.W., 
nearly all data production was done by B.K.M. and all computational 
analyses were done by C.Q. Nearly all experiments and analyses were 
completed within one year. Direct costs of reagents and labour were 
around US$70,000, and sequencing cost around US$300,000. This 
single dataset is equivalent to about 30% of the aggregated corpus of 
the Human Cell Atlas Data Portal (https://data.humancellatlas.org/) 
as of March 2023.

https://data.humancellatlas.org/
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Three broad concepts supported our ability to generate, analyse 
and integrate such a large dataset with a small team at a modest cost: 
First, multiplexing, which fundamentally underlies the exponential 
scalability of single-cell combinatorial indexing as well as that of mas-
sively parallel DNA sequencing. Second, open science, as we have taken 
abundant advantage of many freely released software packages for 
single-cell data analysis14,20,47,63. Third, our focus on mouse develop-
ment, an eminently reproducible process through which we could 
access all mammalian cell types (or their predecessors) within a series 
of physically compact samples.

Our goal in this study was not to learn a specific piece of biology, but 
rather to advance the foundation for a comprehensive understanding 
of mammalian development. Although the dataset is a rich source of 
hypotheses (for example, to identify candidate transcription factor 
drivers of all prenatal cell types), the largest surprise was the discov-
ery of rapid changes in transcriptional state in a restricted subset of 
cell types within 1 h immediately following birth. There is immense 
evolutionary pressure on the transition from placental to extrauterine 
life, which is arguably as fraught a moment as gastrulation in terms 
of physiological peril64. Some genes that are sharply upregulated in 
certain cell types can be attributed to specific adaptations. However, 
many more genes are dynamic in these and myriad other cell types 
shortly after birth. The adaptive functions served, as well as the mecha-
nisms underlying their rapid induction, are ripe for further exploration. 

Notably, human babies delivered by C-section versus vaginal routes 
have differences in long-term physiology and health outcomes65. It 
is plausible that aspects of these postnatal phenotypic differences 
have their roots in how the massive, abrupt, cell-type-specific changes 
documented here are influenced by the mode of delivery.

We only profiled only one embryo for most timepoints, such that we 
cannot systematically assess interindividual variation. However, such 
analyses may be better pursued through other datasets—for exam-
ple, the recent profiling of 101 mutant or wild-type E13.5 embryos66. 
Although both sexes were profiled, generally alternating, we have yet 
to delve into sex differences, and this remains one of many avenues 
of investigation that we hope researchers in the field will pursue. The 
data may also be useful in ways that we did not originally anticipate—
for example, for pre-training large language models of mammalian 
biology67.

We recently proposed the concept of a consensus ontogeny of cell 
types, inclusive of lineage histories and molecular states, as a potential 
structure for a reference cell tree68. The cell-type tree constructed here, 
which spans mouse development from single-cell zygote to free-living 
pup, represents a further step in this direction. But just as Sulston 
reconstructed both the embryonic and post-embryonic lineages of 
C. elegans69,70, mouse development does not end at P0. Extending this 
framework to postnatal timepoints may ultimately yield a single-cell 
time-lapse of the entire mammalian lifespan, from conception to death.
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Fig. 6 | Rapid shifts in transcriptional state occur in a restricted subset of 
cell types upon birth. a, Re-embedded 2D UMAP of cells from hepatocytes, 
adipocytes, and lung and airway, with colours highlighting cells from pre-E18.75 
stages (left), E18.75 (middle) or P0 (right) embryos. b, We identified cell types 
with abrupt transcriptional changes before versus after birth by combining 
cells from animals collected after E16, performing PCA and calculating the 
average proportion of nearest neighbour cells from a different timepoint for 
each cell type (Methods). A low proportion of neighbours from different 
timepoints corresponds to a relatively abrupt change in transcriptional state. 
P0 points are highlighted with a black boundary. Differentially expressed 
genes for the 20 most highly ranked cell types are shown in Supplementary 
Table 25. c, A new scRNA-seq dataset (birth series) was generated from nuclei of 
pups collected after delivery (three vaginal births, six C-sections with 20-min 

increments). d, For each cell cluster in the birth series dataset, we calculated a 
Pearson correlation between the timepoint of each cell and the average 
timepoints of its ten nearest neighbours. High correlations indicate rapid, 
synchronized changes in transcriptional state. e, Re-embedded 2D UMAP of 
cells from hepatocytes, adipocytes, and lung and airway, based on cells from 
six pups delivered by C-section, with colours highlighting cells from pups 
collected after different intervals after delivery. f, Average normalized gene 
expression of selected genes for E18.75 versus P0 in the original data (top) and 
normalized expression of the same genes as a function of C-section timepoints 
(bottom) for hepatocytes, brown adipocyte cells and alveolar type 1 cells. Gene 
expression is normalized to total UMIs per cell and plotted as the natural 
logarithm. The line of gene expression was plotted using the geom_smooth 
function in ggplot2.
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M et ho ds

Data reporting
For newly generated mouse embryo data, no statistical methods were 
used to predetermine sample size. Embryos used in the experiments 
were randomized before sample preparation. Investigators were 
blinded to group allocation during sample collection and data genera-
tion and analysis. Embryo collection and sci-RNA-seq3 data generation 
were performed by different researchers in different locations.

Mouse embryo collection and staging
All animal use at The Jackson Laboratory was done in accordance with 
the Animal Welfare Act and the AVMA Guidelines on Euthanasia, in com-
pliance with the ILAR Guide for Care and Use of Laboratory Animals, 
and with prior approval from The Jackson Laboratory Animal Care and 
Use Committee under protocol AUS20028.

The details of collecting the 12 mouse embryos with somite counts 
ranging from 0 to 12 were described previously8. In brief, C57BL/6NJ 
(strain 005304) mice were obtained at The Jackson Laboratory and 
mice were maintained via standard husbandry procedures. Timed 
matings were set in the afternoon and plugs were checked the follow-
ing morning. Noon of the day a plug was found was defined as E0.5. 
On the morning of E8.5, individual decidua were removed and placed 
in ice cold PBS during the collection. Individual embryos were dis-
sected free of extraembryonic membranes, imaged, and the number 
of somites present were noted prior to snap freezing in liquid nitrogen 
(Extended Data Fig. 1a). A portion of yolk sac from each embryo was 
collected for sex based genotyping and samples were stored at −80 °C 
until further processing.

For newly processed mouse embryos, we used a combination of 
staging methodologies depending on gestational age of collection 
(Extended Data Fig. 1b–f). To maximize temporal coherence, resolu-
tion, and accuracy, we sought to stage individual embryos based on 
well-defined morphological criteria, rather than by gestational day 
alone. Embryos collected between E8.0–E10.0 were staged based upon 
the number of somites counted at the time of collection and further 
characterized by morphological features (Extended Data Fig. 1a). For 
E10.25–E14.75 embryos, developmental age was determined using 
the embryonic mouse ontogenetic staging system (eMOSS, https://
limbstaging.embl.es/), which leverages dynamic changes in hindlimb 
bud morphology and landmark-free based morphometry to estimate 
the absolute developmental stage of a sample71,72. A modified staging 
tool, implemented in Python and exhibiting better performance on 
E14.0–E15.0 samples, was used to confirm staging of samples within 
this window (documentation and Python scripts available at https://
github.com/marcomusy/welsh_embryo_stager). To distinguish sam-
ples staged via eMOSS, these samples are prefixed with ‘mE’ to indi-
cate morphometric embryonic day (for example, mE13.5; Extended 
Data Fig. 1b–f). Due to the increased complexity of limb morphol-
ogy at later stages automated staging beyond E15.0 is not possible. 
As a consequence, collections for all remaining embryonic samples 
(E15.0–E18.75) was performed precisely at 00:00, 06:00, 12:00 and 
18:00 on the targeted day. From close inspection of limbs in this sample 
set we defined additional dynamics related to digit morphogenesis 
that allowed further binning of samples collected on days 15 and 16 
(Extended Data Fig. 1b–f). Therefore, amongst samples profiled in this 
study, only the E17.0–E18.75 samples were staged solely by gestational 
age. Finally, P0 samples were collected from litters at noon of the day 
of birth (parturition for C57BL/6NJ occurs between E18.75 and E19.0).

Collection of mouse pups immediately after birth
Samples for the validation experiment on periparturition transcrip-
tional dynamics were collected from a plugged female that was moni-
tored for signs of labour beginning at E18.75. Following the natural 
delivery of 3 pups the dam was euthanized, and following removal 

from the uterus and extraembryonic membranes, the remaining pups 
were either collected immediately or placed in a warming chamber to 
monitor respiratory response and collected at 20-min intervals. We 
collected nine new pups altogether. The first 3 pups were estimated to 
be between 1 h to 2 h old, although this was not precisely timed (sam-
ples 1–3 in Fig. 6c and Extended Data Fig. 12a). None of these pups 
had nursed at the time of collection. The next two pups were taken by 
C-section, decapitated and snap frozen immediately; no breaths were 
taken (samples 4 and 5 in Fig. 6c and Extended Data Fig. 12a). The next 
4 pups were taken by C-section and used for a ‘pink up’ time course, 
collecting one pup every 20 min (that is, 20 min, 40 min, 60 min and 
80 min; samples 6–9 in Fig. 6c and Extended Data Fig. 12a). During this 
time, all pups remained very active and working to establish a breathing 
rhythm. Pup 6 had not fully pinked up at time of collection, but pups 
7–9 had. Pups 8 and 9 had visible lungs in their chest cavities at 60 min. 
The last pup collected at 80 min was fully pink with a reasonably stable 
breathing rhythm. No vocalization was heard from any pups during this 
collection. Of note, for additional quality control, we put nuclei from 
previously profiled E18.75 and P0 embryos into a small number of wells 
of the sci-RNA-seq3 experiment in which nuclei from this validation 
series were processed.

Generating data using an optimized version of sci-RNA-seq3
Together with E8.5 data, which has been reported previously8, a total 
of 15 sci-RNA-seq3 experiments were performed on a total of 75 mouse 
embryos. At least one sample was included for every 6-h interval from 
E8.0 to P0, and we also included embryos with as many specific somite 
counts as we could for the 0–34 somite range. Multiple samples were 
selected for a few timepoints (for example, two samples for E13.0) to 
boost cell numbers. Meanwhile, we tried to ensure that both male and 
female mice roughly alternated at adjacent timepoints (Extended Data 
Fig. 2j). A detailed summary and images of individual embryos can be 
found in Extended Data Fig. 1 and Supplementary Table. 1.

To generate the dataset, we used the optimized sci-RNA-seq3 proto-
col3 as written, adjusting the volume and type of lysis buffer to the size 
of the embryos. In brief, frozen embryos were pulverized on dry ice and 
cells were lysed with a phosphate-based, hypotonic lysis buffer contain-
ing magnesium chloride, Igepal, diethyl pyrocarbonate as an RNase 
inhibitor, and either sucrose or bovine serum albumin (BSA). Lysate 
was passed over a 20-μm filter, and the nuclei-containing flow-through 
was fixed with a mixture of methanol and dithiobis (succinimidyl pro-
pionate) (DSP). Nuclei were rehydrated and washed in a sucrose/PBS/
Triton X-100/magnesium chloride buffer (SPBSTM), then counted and 
distributed into 96-well plates for reverse transcription with indexed 
oligonucleotide-dT primers.

Age-specific adaptations were as follows. E10–E13 embryos use 
5 ml BSA lysis buffer, E14 embryos use 10 ml BSA lysis buffer, E15–E18 
embryos use 20 ml sucrose-based lysis buffer. Each of these samples 
were split over 48–96 wells for reverse transcription and the first round 
of indexing. A newborn P0 mouse requires 40 ml of sucrose-based lysis 
buffer, and the lysate is divided into 4 fractions for filtration and fixing 
because of the amount of tissue involved. The two P0 mice were each 
processed as an individual experiment and were each split over 384 
wells for reverse transcription.

For the mouse samples E8.0–E9.75, we used the ‘Tiny Sci’ adaptation 
of the optimized sci-RNA-seq33. Frozen embryos were gently resus-
pended in 100 μl lysis buffer to free the nuclei, then 400 μl of dithiobis 
(succinimidyl propionate)-methanol fixative was added. In the same 
tube, fixed nuclei were rehydrated, washed and then put directly into 
8–32 wells for reverse transcription.

After reverse transcription, nuclei were pooled, washed, and redis-
tributed into fresh 96-well plates to attach a second index sequence by 
ligation. Then the nuclei were pooled again, washed and redistributed 
into the final plates. There, the nuclei would undergo second-strand syn-
thesis, extraction, tagmentation with Tn5 transposase and finally PCR 
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to add the final indexes. The PCR products were pooled, size-selected, 
and then the library was sequenced on an Illumina NovaSeq. For some 
experiments, a second NovaSeq run was necessary to capture the extent 
of the library complexity, so we would add more sequencing reads 
until the PCR duplication rate met a threshold of 50% or the median 
UMI count per cell went over 2,500. The validation dataset (Extended 
Data Fig. 4a–f) generated from 8–21-somite embryos was sequenced 
on an Illumina NextSeq.

Processing of sci-RNA-seq3 sequencing reads
Data from each individual sci-RNA-seq3 experiment was processed 
independently. For each experiment, read alignment and gene count 
matrix generation was performed using the pipeline that we devel-
oped for sci-RNA-seq314 (https://github.com/JunyueC/sci-RNA-seq3_
pipeline). In brief, base calls were converted to fastq format using 
Illumina’s bcl2fastq v2.20 and demultiplexed based on PCR i5 and i7 
barcodes using maximum likelihood demultiplexing package deML73 
with default settings. Demultiplexed reads were filtered based on the 
reverse transcription (RT) index and hairpin ligation adapter index 
(Levenshtein edit distance (ED) < 2, including insertions and deletions) 
and adapter-clipped using trim_galore v0.6.5 (https://github.com/
FelixKrueger/TrimGalore) with default settings. Trimmed reads were 
mapped to the mouse reference genome (mm10) for mouse embryo 
nuclei using STAR v2.6.1d74 with default settings and gene annotations 
(GENCODE VM12 for mouse). Uniquely mapping reads were extracted, 
and duplicates were removed using the UMI sequence, RT index, liga-
tion index and read 2 end-coordinate (that is, reads with identical 
UMI, RT index, ligation index and tagmentation site were considered 
duplicates). Finally, mapped reads were split into constituent cellular 
indices by further demultiplexing reads using the RT index and liga-
tion index. To generate digital expression matrices, we calculated the 
number of strand-specific UMIs for each cell mapping to the exonic and 
intronic regions of each gene with the Python v2.7.13 HTseq package75. 
For multi-mapping reads (that is, those mapping to multiple genes), 
the read were assigned to the gene for which the distance between 
the mapped location and the 3′ end of that gene was smallest, except 
in cases where the read mapped to within 100 bp of the 3′ end of more 
than one gene, in which case the read was discarded. For most analyses, 
we included both expected-strand intronic and exonic UMIs in per-gene 
single-cell expression matrices. After the single-cell gene count matrix 
was generated, cells with low quality (UMI < 200 or detected genes <100 
or unmatched_rate (proportion of reads not mapping to any exon or 
intron) ≥ 0.4) were filtered out. Each cell was assigned to its originat-
ing mouse embryo on the basis of the reverse transcription barcode.

Doublet removal
We performed three steps with the goal of exhaustively detecting 
and removing potential doublets. Of note, all these analyses were 
performed separately on data from each experiment.

First, we used Scrublet to detect doublets directly. In this step, we 
first randomly split the dataset into multiple subsets (six for most of 
the experiments) in order to reduce the time and memory require-
ments. We then applied the Scrublet v0.1 pipeline76 to each subset with 
parameters (min_count = 3, min_cells = 3, vscore_percentile = 85, n_pc = 
30, expected_doublet_rate = 0.06, sim_doublet_ratio = 2, n_neighbors 
= 30, scaling_method = ‘log’) for doublet score calculation. Cells with 
doublet scores over 0.2 were annotated as detected doublets.

Second, we performed two rounds of clustering and used the dou-
blet annotations to identify subclusters that are enriched in doublets. 
The clustering was performed based on Scanpy v.1.6.020. In brief, gene 
counts mapping to sex chromosomes were removed, and genes with 
zero counts were filtered out. Each cell was normalized by the total 
UMI count per cell, and the top 3,000 genes with the highest variance 
were selected, followed by renormalizing the gene expression matrix. 
The data was log-transformed after adding a pseudocount, and scaled 

to unit variance and zero mean. The dimensionality of the data was 
reduced by PCA (30 components), followed by Louvain clustering 
with default parameters (resolution = 1). For the Louvain clustering, 
we first computed a neighbourhood graph using a local neighbour-
hood number of 50 using scanpy.pp.neighbors. We then clustered 
the cells into sub-groups using the Louvain algorithm implemented 
by the scanpy.tl.louvain function. For each cell cluster, we applied the 
same strategies to identify subclusters, except that we set resolution = 
3 for Louvain clustering. Subclusters with a detected doublet ratio (by 
Scrublet) over 15% were annotated as doublet-derived subclusters. We 
then removed cells which are either labelled as doublets by Scrublet 
or that were included in doublet-derived subclusters. Altogether, 2.7% 
to 16.8% of cells in each experiment were removed by this procedure.

We found that the above Scrublet and iterative clustering-based 
approach has difficulty identifying doublets in clusters derived from 
rare cell types (for example, clusters comprising less than 1% of the total 
cell population), so we applied a third step to further detect and remove 
doublets. This step uses a different strategy to cluster and subcluster 
the data, and then looks for subclusters whose differentially expressed 
genes differ from those of their associated clusters. This step consists 
of a series of ten substeps. (1) We reduced each cell’s expression vector 
to retain only protein-coding genes, long intergenic non-coding RNAs 
(lincRNAs) and pseudogenes. (2) Genes expressed in fewer than 10 cells 
and cells in which fewer than 100 genes were detected were further 
filtered out. (3) The dimensionality of the data was reduced by PCA 
(50 components) first on the top 5,000 most highly dispersed genes 
and then with UMAP (max_components = 2, n_neighbors = 50, min_dist 
= 0.1, metric = ‘cosine’) using Monocle 3-alpha14. (4) Cell clusters were 
identified in UMAP 2D space using the Louvain algorithm implemented 
in Monocle 3-alpha (resolution = 10−6). Cell partitions were detected 
using the partitionCells function implemented in Monocle 3-alpha. 
This function applies algorithms that automatically partition cells to 
learn disjoint or parallel trajectories based on concepts from ‘approxi-
mate graph abstraction’77. (5) We took the cell partitions identified by 
Monocle 3-alpha (cell clusters were used instead for three experiments 
that profiled embryos before E10), downsampled each partition to 
2,500 cells, and computed differentially expressed genes across cell 
partitions with the top_markers function of Monocle 3 (reference_cells 
= 1000). (6) We selected a gene set combining the top ten gene markers 
for each cell partition (filtering out genes with fraction_expressing <0.1 
and then ordering by pseudo_R2). (7) Cells from each main cell partition 
were subjected to dimensionality reduction by PCA (10 components) 
on the selected set of top partition-specific gene markers. (8) Each cell 
partition was further reduced to 2D using UMAP (max_components = 
2, n_neighbors = 50, min_dist = 0.1, metric = ‘cosine’). (9) The cells within 
each partition were further sub-clustered using the Louvain algorithm 
implemented in Monocle 3-alpha (resolution = 10−4 for most clustering 
analysis). (10) Subclusters that expressed low levels of the genes that 
were found to be differentially expressed in step 5, had high levels of 
markers specific to a different partition, and had relatively high doublet 
scores, were labelled as doublet-derived subclusters and removed from 
the analysis. On average, this procedure eliminated 3.4% of cells from 
each experiment (range 0.5–13.2%) of the cells in each experiment 
(Extended Data Fig. 2a–e).

Cell clustering and cell-type annotations
For data from individual experiments, after removing the potential 
doublets detected by the above three steps, we further filtered out the 
potential low-quality cells by investigating the numbers of UMIs and the 
proportion of reads mapping to the exonic regions per cell (Extended 
Data Fig. 2f). Then, we merged cells from individual experiments to 
generate the penultimate dataset, which included 15 sci-RNA-seq3 
experiments and 21 runs of the Illumina NovaSeq instrument. In our 
early embeddings of this penultimate dataset, we noticed that one 
mouse embryo at E14.5 had a grossly reduced proportion of neuronal 

https://github.com/JunyueC/sci-RNA-seq3_pipeline
https://github.com/JunyueC/sci-RNA-seq3_pipeline
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore


cells. This particular sample had been divided during pulverization, and 
we suspect that specific anatomical portions of the frozen embryo did 
not make it into the experiment. We therefore removed cells from this 
E14.5 embryo, and we further filtered out cells from the whole dataset 
with doublet score (by Scrublet) > 0.15 (~0.3% of the whole dataset), as 
well as cells with either the percentage of reads mapping to ribosomal 
chromosome (Ribo%) > 5 or the percentage of reads mapping to mito-
chondrial chromosome (Mito%) > 10 (~0.1% of the whole dataset). Finally, 
11,441,407 cells from 74 embryos were retained, of which the median UMI 
count per cell is 2,700 and median gene count detected per cell is 1,574. 
For this final matrix, the number of cells recovered by each embryo and 
the basic quality information for cells from each sci-RNA-seq3 experi-
ment is summarized in the Supplementary Tables 1 and 2. For sex separa-
tion and confirmation of embryos with or without sex genotyping, we 
counted reads mapping to a female-specific non-coding RNA (Xist) or 
chromosome Y genes (except Erdr1 which is in both chromosome X and 
chromosome Y). Embryos were readily separated into females (more 
reads mapping to Xist than chromosome Y genes) and males (more 
reads mapping to chromosome Y genes than Xist).

We then applied Scanpy v.1.6.020 to this final dataset, perform-
ing conventional single-cell RNA-seq data processing: (1) retaining 
protein-coding genes, lincRNA, and pseudogenes for each cell and 
removing gene counts mapping to sex chromosomes; (2) normalizing 
the UMI counts by the total count per cell followed by log transforma-
tion; (3) selecting the 2,500 most highly variable genes and scaling the 
expression of each to zero mean and unit variance; (4) applying PCA 
and then using the top 30 principal components to calculate a neigh-
bourhood graph (n_neighbors = 50), followed by Leiden clustering 
(resolution = 1); (4) performing UMAP visualization in 2D or 3D space 
(min.dist = 0.1). For cell clustering, we manually adjusted the resolution 
parameter towards modest overclustering, and then manually merged 
adjacent clusters if they had a limited number of DEGs relative to one 
another or if they both highly expressed the same literature-nominated 
marker genes. For each of the 26 major cell clusters identified by the 
global embedding, we further performed a sub-clustering with the 
similar strategies, except setting n_neighbors = 30 when calculating 
the neighbour graph and min_dist = 0.3 when performing the UMAP. 
Subsequently, we annotated individual cell clusters identified by the 
sub-clustering analysis using at least two literature-nominated marker 
genes per cell-type label (Supplementary Table 5).

To be clear, we have hierarchically nominated three levels of cell-type 
annotations in the manuscript. (1) In the global embedding involving 
all 11.4 M cells we identified 26 major cell clusters (Fig. 1b,c and Supple-
mentary Table 4). (2) For individual major cell clusters, we performed 
sub-clustering, resulting in 190 cell types (Extended Data Fig. 3 and 
Supplementary Table 5). (3) For a handful of cell types, in specific parts 
of the manuscript, we performed further sub-clustering, to identify 
cell subtypes. For example: (i) we re-embedded 745,494 cells from the 
lateral plate and intermediate mesoderm derivatives, identifying 22 
subtypes, most of which correspond to different types of mesenchymal 
cells (Fig. 3d and Supplementary Table 12). (ii) we re-embedded 296,020 
cells (glutamatergic neurons, GABAergic neurons, spinal cord dorsal 
progenitors and spinal cord ventral progenitors) from stages <E13, 
identifying 18 different neuron subtypes (Fig. 4e and Supplementary 
Table 12).

Of note, we processed and analysed the birth series dataset 
(n = 962,697 nuclei after removing low-quality cells and potential dou-
blets cells) and the early versus late somites data (n = 104,671 nuclei 
after removing low-quality cells and potential doublets cells) using 
exactly the same strategy, except without performing sub-clustering 
on each major cell cluster.

Whole-mouse embryo analysis
Each cell was assigned to the mouse embryo from which it derived 
based on its reverse transcription barcode. For each of the 74 samples, 

UMI counts mapping to the sample were aggregated to generate a 
pseudo-bulk RNA-seq profile for the sample. Each cell’s counts were 
then normalized by dividing by its estimated size factor. The data were 
then log2-transformed after adding a pseudocount, and PCA was per-
formed on the transformed data using the 3,000 most highly variable 
genes. The normalization and dimension reduction were performed 
using Monocle v3.

Quantitatively estimating cell number for individual mouse 
embryo at any stage during organogenesis
To estimate the cell number of individual embryos, we selected a rep-
resentative embryo from 12 timepoints at 1-day increments, from E8.5 
to P0 (roughly considered as E19.5). Each embryo was digested with 
proteinase K overnight, and total genomic DNA was isolated with a 
Qiagen Puregene tissue kit (Qiagen 158063). DNA was quantified and 
cell number was estimated by taking the total ng of recovered DNA 
and assuming 2.5 billion base pairs per mouse genome (times two for 
a diploid cell), 650 g per mole of a base pair. Estimating cell number 
this way does not include any losses due to the DNA preparation, and 
does not count non-nucleated cells.

Based on the experimentally estimated cell numbers of those 12 
embryos, we applied polynomial regression (degree = 3) to fix a curve 
across embryos between the embryonic day and log2-scaled cell number 
(adjusted R2 > 0.98) (Extended Data Fig. 2l). P0 was treated as E19.5 in 
the model. Then, the total cell number of a whole mouse embryo at 
any day between E8.5 and P0 is predicted using the below formula:

log (cell number) = 0.011369 × day − 0.583861 × day + 10.397036 × day

− 35.469755
2

3 2

To estimate the dynamic ‘doubling time’ of the total cell number in 
a whole mouse embryo, at a given timepoint (day), we took the deriva-
tive from the above formula as the log2-scaled proliferation rate p(day), 
and then calculated 24 × 2/2p(day), resulting in a point estimate of the 
number of hours required for the mouse embryo to double its total 
cell number (Extended Data Fig. 2m).

Characterizing transcriptional heterogeneity in the posterior 
embryo
We re-analysed 121,118 cells which were initially annotated as NMPs and 
spinal cord progenitors, mesodermal progenitors (Tbx6+), notochord, 
ciliated nodal cells, or gut, from embryos during the early somitogen-
esis (somite counts 0–34; E8–E10). Three clusters were identified, with 
cluster 1 dominated by NMPs and their derivatives (n = 98,545 cells), 
cluster 2 dominated by notochord and ciliated nodal cells (n = 3,949 
cells), and cluster 3 dominated by gut cells (n = 18,624 cells).

To characterize transcriptional heterogeneity within each of the three 
cell clusters, we performed PCA on the 2,500 most highly variable genes 
in each cluster. Then, we calculated the Pearson correlation between 
the expression of the top highly variable genes and each of the top 
principal components within each of the three cell clusters. In brief, 
for each cell cluster, the top 2,500 highly variable genes were identi-
fied and their gene expression values were calculated from original 
UMI counts normalized to total UMIs per cell, followed by natural-log 
transformation and scaling. After performing Pearson correlation with 
the selected principal component, significant genes were identified if 
their correlation coefficients are less than mean − 1 × s.d. or greater than 
mean + 1 × s.d. of all the correlation coefficients, and false discovery 
rate < 0.05. In addition, we identified differentially expressed genes 
between early (n = 4,949 cells) and late (n = 3,910 cells) NMPs, using 
the FindMarkers function of Seurat v363, after filtering out genes that 
are detected in <10% of cells in both of the two populations. Significant 
genes were identified if their absolutely log-scaled fold changes >0.25, 
and adjusted P values < 0.05. Of note, here cells are labelled as NMPs 
if they are both strongly T+ (raw count ≥5) and Meis1− (raw count = 0).
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In Fig. 2k, the Pearson correlation coefficient between gene expres-

sion for the top highly variable genes and either PC1 of notochord (x 
axis) or PC1 of gut (y axis) are plotted. The overlapped genes between 
two cell clusters are shown as each dot, and the overlapped significant 
genes are highlighted in blue. The first quadrant corresponds to the 
inferred anterior aspect of each cluster, while the third quadrant cor-
responds to the inferred posterior aspect. In Fig. 2l, the log-scaled fold 
change of the average expression for the top highly variable genes 
between early versus late NMPs (x axis), and the Pearson correlation 
coefficient between gene expression for the top highly variable genes 
and PC2 of gut (y axis) are plotted. The first quadrant is associated 
with early somite counts for each cluster, while the third quadrant is 
associated with late somite counts. In the gene expression line plots in 
Fig. 2e, left and Fig. 2k,l, right, gene expression values were calculated 
from original UMI counts normalized to total UMIs per cell, followed 
by natural-log transformation. The line of gene expression was plotted 
by the geom_smooth function in ggplot2.

Spatial mapping with Tangram
To infer the spatial origin of each lateral plate and intermediate mes-
oderm derivative, we used a public dataset called Mosta46, which 
profiles spatial transcriptomes for 53 sections of mouse embryos 
spanning 8 timepoints from E9.5 to E16.5. We combined this data 
with our own data to perform spatial mapping analysis using Tan-
gram47. In brief, for each timepoint of the Mosta data, we combined 
scRNA-seq data from three adjacent timepoints from our data (for 
example, E16.25, E16.5 and E16.75 from scRNA-seq versus E16.5 from 
Mosta data), and the total number of voxels within each section was 
randomly downsampled to 9,000 for computational efficiency. We 
used the Tangram with default parameters to estimate the spatial 
coordinates of cells from each cell type in the scRNA-seq data, and 
then visualized the results on the coordinates provided by Mosta. 
The Tangram model was trained in GPU mode using a NVIDIA A100 
GPU. After applying Tangram, for each section, a cell-by-voxel matrix 
with mapping probabilities was returned. This matrix shows the prob-
ability that each cell originated from each voxel in the section. To 
reduce noise, we further smoothed the mapping probabilities for 
each voxel by averaging values of their k-nearest neighbouring voxels 
(k is calculated by natural-log-scaled total number of voxels on that 
section) followed by scaling it to 0 to 1 across voxels of each section. 
Although only selected results are presented in the paper, the mapping 
results for each Mosta section on which we performed this analysis 
are available at https://github.com/ChengxiangQiu/JAX_code/blob/
main/spatial_mapping.tar.gz.

Generating a cell-type tree for mouse development
We collected and combined scRNA-seq data from four published data-
sets, which consisted of 110,000 cells spanning E0 to E8.5, and the main 
dataset described in this paper, which consisted of 11.4 million cells 
spanning E8 to P0 (Supplementary Table 17). We generated the tree of 
cell types for mouse development via the following steps.

First, based on data source, developmental window and cell-type 
annotations, we split cells into fourteen subsystems which could be 
separately analysed and subsequently integrated. The first two sub-
systems correspond to the pre-gastrulation and gastrulation phases of 
development and are based on the external datasets4–7. The remaining 
12 subsystems derive from the data reported here, and collectively 
encompass organogenesis and fetal development (Supplementary 
Tables 17 and 18).

Second, dimensionality reduction was performed separately on 
cells from each of the fourteen subsystems. Manual re-examination 
of each subsystem led to some corrections or refinements of cell-type 
annotations, ultimately resulting in 283 annotated cell-type nodes, 
some with only a handful of cells (for example, 60 ciliated nodal 
cells) and others with vastly more (for example, 650,000 fibroblasts) 

(Supplementary Tables 19 and 20). Of note, each of these annotated 
cell-type nodes derives from one data source, such that there are some 
redundant annotations that facilitate ‘bridging’ between datasets 
(Extended Data Fig. 11d–h). In contrast to our previous strategy in 
which nodes were stage-specific8, each cell-type node here is tem-
porally asynchronous, and of course may also contain other kinds of 
heterogeneity (for example, spatial, differentiation, cell cycle and 
others).

Third, we sought to draw edges between nodes (Fig. 5a–f). Within 
each subsystem, we identified pairs of cells that were MNNs in 
30-dimensional PCA space (k = 10 neighbours for pre-gastrulation 
and gastrulation subsystems, k = 15 for organogenesis and fetal devel-
opment subsystems). Although the overwhelming majority of MNNs 
occurred within cell-type nodes, some MNNs spanned nodes and are 
presumably enriched for bona fide cell-type transitions. To approach 
this systematically, we calculated the total number of MNNs that 
spanned each possible pair of cell-type nodes within a given subsys-
tem, normalized by the total number of possible MNNs between those 
nodes, and ranked all possible intra-subsystem edges based on this 
metric (Supplementary Table 21). Of note, due to its complexity, this 
was done in two stages for the ‘Brain and spinal cord’ subsystem, first 
applying the heuristic to the subset of cell types corresponding to the 
patterned neuroectoderm, and then again to identify edges between 
the patterned neuroectoderm and its derivatives (that is, neurons, 
glial cells and others).

Fourth, we manually reviewed the ranked list of 1,155 candidate 
edges for biological plausibility (those with a normalized MNN score 
> 1; Extended Data Fig. 11d), resulting in 452 edges which we manu-
ally annotated as more likely to correspond to either ‘developmental 
progression’ or ‘spatial continuity’ (Supplementary Table 22). Where 
nodes were connected to more than one other node, distinct subsets of 
cells were generally involved in each edge (Fig. 5a,b,d,e), and inter-node 
MNN pairs exhibited temporal coincidence (Fig. 5c,f). As only a handful 
of cells were profiled in the pre-gastrulation subsystem, those edges 
were added manually.

Finally, to bridge subsystems, we performed batch correction and 
co-embedding of selected timepoints from either the pre-gastrulation 
and gastrulation datasets, or the gastrulation and organogenesis and 
fetal development datasets, to identify equivalent cell-type nodes, 
resulting in a third category of ‘dataset equivalence’ edges (Extended 
Data Fig. 11e–h). For example, we performed anchor-based batch 
correction63 followed by integration between cells from E6.5 to E8.5 
generated on the 10x Genomics platform7 (n = 108,857 cells) and 
the earliest 1% of this dataset (0–12 somite stage embryos) gener-
ated by sci-RNA-seq3 (n = 153,597 nuclei) (Extended Data Fig. 11e,f). 
This allowed us to identify 36 cell types from the integrated dataset, 
which we used to identify bridging edges between the gastrulation 
subsystem and the later subsystems (Extended Data Fig. 11g,h). Most 
of the 12 organogenesis and fetal development subsystems originate 
in cell-type nodes for which equivalent nodes are already present at 
gastrulation. The exceptions, presumably due to undersampling of 
this transition, were the ‘blood’ and ‘PNS neuron’ subsystems, for 
which we manually added edges to connect them with biologically  
plausible pseudo-ancestors. Altogether, we added 55 inter-subsystem 
edges.

In practice, a small number of nodes in the tree have more than one 
parent, so the ‘tree’ is formally a rooted, directed graph that represents 
mouse development from E0 to P0. The visualization shown in Fig. 5g 
was created using yFiles Hierarchical layout in Cytoscape v3.9.1. For 
presentation purposes, we removed most of the spatial continuity 
edges, except for those between spinal cord dorsal and ventral progeni-
tors after E13.0 and GABAergic and glutamatergic neurons after E13.0. 
We also merged nodes with redundant labels derived from different 
datasets (that is, dataset equivalence edges). This resulted in a rooted 
graph with 262 cell-type nodes and 338 edges.

https://github.com/ChengxiangQiu/JAX_code/blob/main/spatial_mapping.tar.gz
https://github.com/ChengxiangQiu/JAX_code/blob/main/spatial_mapping.tar.gz


Our evaluation of the robustness of our approach to technical fac-
tors or parameter choices is provided in Extended Data Fig. 11a–c and 
Supplementary Note 2.

Nominating key transcription factors and genes
The list of 1,636 mouse proteins that are putatively transcription fac-
tors was collated from AnimalTFDB v3 (http://bioinfo.life.hust.edu.
cn/AnimalTFDB/)78. For each edge in the cell-type tree, we stratified 
each cell-type transition into four phases. Specifically, we identified 
the subset of cells within each node that were either ‘inter-node’ MNNs 
of the other cell-type or ‘intra-node’ MNNs of those cells. If A → B, this 
approach effectively models the transition as group 1 → 2 → 3 → 4 
(Extended Data Fig. 11i,j). Next, we identified DETFs and genes (DEGs) 
across each portion of the modelled transition—that is, early (1 → 2), 
inter-node (2 → 3) and late (3 → 4)—by applying FindMarkers function 
in Seurat v3 with parameters (logfc.threshold = 0, min.pct = 0). This 
strategy highlights differences between cells that are most proximate 
to the cell-type transition itself.

After excluding dataset equivalence edges and the ‘pre-gastrulation’ 
subsystem, we nominated key transcription factors and genes that 
specify cell types for each of the 436 edges. Of note, the directionality 
of many of these edges was not immediately obvious (that is, those 
annotated as “spatial continuity” edges). In these cases, the orientation 
of the ‘early’ and ‘late’ phases is arbitrary. For edges with a relatively 
small number of MNN pairs, we expanded each group to at least 200 
cells by iteratively including their MNNs within the same cell type, to 
increase statistical power.

Identifying cell types with abrupt transcriptional changes 
before versus after birth
To systematically identify which cell types exhibit abrupt transcrip-
tional changes before versus after birth, we performed the following 
steps.
• We focused on the 71 cell types with at least 200 cells from P0 and at 

least 200 cells from at least 5 timepoints prior to P0.
• We combined cells from animals collected subsequent to E16 and 

performed PCA based on the top 2,500 highly variable genes.
• Timepoints with at least 200 cells were selected and cells were down-

sampled from each timepoint to the median number of cells across 
those selected timepoints.

• The k-nearest neighbours (k was adjusted for different cell types, by 
taking the log2-scaled median number of cells across the selected 
timepoints) were identified in PCA space (n = 30 dimensions).

• We calculated the average proportion of nearest neighbour cells that 
were from a different timepoint for cells within each cell type. In this 
framing, a low proportion of neighbours from different timepoints 
corresponds to a relatively abrupt change in transcriptional state.
We subjected the birth-series dataset to a similar analysis. For each 

major cell cluster in the birth-series dataset, we took cells from the 6 
pups delivered by C-section and calculated the Pearson correlation 
coefficient between the timepoint of each cell and the average time-
points of its 10 nearest neighbours identified from the global PCA 
embedding (n = 30 dimensions). In this framing, a high correlation 
indicates that the cell and its nearest neighbours all underwent rapid, 
synchronized changes in transcriptional state.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data generated in this study can be downloaded in raw and pro-
cessed forms from the NCBI Gene Expression Omnibus (GEO) under 

accession numbers GSE186069 and GSE228590. The data are also avail-
able at https://omg.gs.washington.edu/, together with a browser that 
enables its visual exploration. The data are accessible for download 
and visualization on CELLxGENE. The published datasets analysed for 
this study were retrieved from either the GEO repository (GSE44183, 
GSE100597 and GSE109071), https://github.com/MarioniLab/
EmbryoTimecourse2018 or https://db.cngb.org/stomics/mosta/ and 
re-processed. Published in situ hybridization images were obtained 
from the MGI website (https://www.informatics.jax.org/). Mouse ref-
erence genome (mm10) and gene annotations (GENCODE VM12) were 
used for read alignment and gene count matrix generation. Source data 
are provided with this paper.

Code availability
The Python and R code used to analyse RNA-seq data is available at 
https://github.com/ChengxiangQiu/JAX_code.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Embryos were collected and staged based on 
morphological features, including somite number and limb bud geometry. 
a, Embryos harvested between E8 and E10 were precisely staged based upon 
somite counting. Harvested embryos were grouped into bins based on somite 
counting and further characterized based upon morphological features. 
Stage-representative images are shown with details of the main staging criteria 
for each coarse temporal bin listed. The approximately overlapping Theiler 
Stage (TS) is also noted for reference. Scale bar: 200 um. b, After E10, embryos 
were precisely staged based on morphological features. This was mainly done 
using the embryonic mouse ontogenetic staging system (eMOSS), an automated 
process that leverages limb bud geometry to infer developmental stage71,72. 
Staging results derived from eMOSS are designated with “mE” for morphometric 
embryonic day. Specifically, for each temporal bin at 6-hr increments from 
E10.25-E11.75, an image of a stage-representative embryo is shown in the top 
row. Images of each embryo’s limb bud (white dashed outline) used for staging 
are shown in the bottom row. Scale bar: 400 um (top)/200 um (bottom). c, View 

of the craniofacial region of embryos shown in panel b demonstrates that limb 
bud staging also recreates the ordered ontogenetic progression of craniofacial 
morphogenesis, including development of the brain, eye, and outgrowth of 
facial prominences (black dashed line highlights maxillary process). Scale bar: 
200 um. d, For each temporal bin at 6-hr increments from E12.0-E14.25, an 
image of a randomly selected embryo is shown in the top row. The subview  
of its hindlimb is shown in the bottom row. Scale bar: 400 um (top)/200 um 
(bottom). e, eMOSS is able to stage E10.25-E14.75, after which limb morphology 
becomes too complex. We defined additional dynamics related to digit 
formation to stage E15.0-E16.75 embryos. However, the remaining timepoints 
(E17.0-E18.75) were staged based upon gestational age. For each temporal bin 
at 6-hr increments from E15.0-E18.75, an image of the hindlimbs of a randomly 
selected embryo is shown. Scale bar: 200 um. f, For each temporal bin at 6-hr 
increments from E15.0-P0, an image of a stage-representative embryo is shown. 
Scale bar: 1 mm (except for P0 embryos).
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Quality control on sci-RNA-seq3 experiments. a, We 
performed three steps to detect and remove potential doublets from each 
single sci-RNA-seq3 experiment. First, we used Scrublet to calculate a doublet 
score for each cell. Cells with a doublet score over 0.2 were annotated as 
detected doublets. Second, we clustered and subclustered the entire dataset. 
Subclusters with a detected doublet ratio over 15% were annotated as doublet-
derived subclusters. Third, after removing doublets detected by the first two 
steps, we performed clustering again to identify the major cell partitions (i.e. 
disjoint trajectories). Three experiments (runs 4, 15, and 17) that profiled 
embryos before E10 used cell clusters instead of cell partitions. We then 
generated a union gene list by combining the top 10 differentially expressed 
genes from each cell partition. This gene list was used to perform subclustering 
on each cell partition. Subclusters that showed low expression of target cell 
partition-specific markers and enriched expression of non-target cell cluster-
partition markers were identified as doublet-driven clusters. More details are 
provided in the Methods. The percentage of cells detected and removed as 
doublets by each of the three steps in individual sci-RNA-seq3 experiments is 
shown. b, The labeled cell partitions for each of six selected experiments are 
shown, after removing doublets from the first two steps. c, Example of 
detection of doublet-driven subclusters via step 3. Re-embedded 2D UMAP of 
cells from partition 4 of experiment run_16, with cells colored by subclusters. 
The same UMAP is shown below, with cells colored by doublet score calculated 
by Scublet. d, The same UMAP as in panel c, colored by the normalized gene 
expression of the top 10 differentially expressed genes in either partition 3 
(top) or partition 4 (bottom). e, The same UMAP as experiment run_16 in panel 
b, highlighted by doublets detected in step 3 (red). f, Histograms of log2(UMI 
count) per single nucleus for each of 15 sci-RNA-seq3 experiments. For the 14 
newly performed experiments (run_13 to run_26), upper (blue line) and lower 
(red line) thresholds used for quality filtering correspond to the mean plus 2 
standard deviations and mean minus 1 standard deviation of log2-scaled 
values, respectively, after excluding cells with >85% of reads mapping to exonic 
regions (except for the lower bound of 500, which was manually assigned for 
run_25), are shown with vertical lines. The data of run_4, which was reported 
previously8, was subjected to the same thresholds used in the original study, i.e. 
the mean +/− 2 standard deviations of log2-scaled values (blue and red vertical 
lines, respectively), after excluding cells with >85% of reads mapping to exonic 
regions. Run_23_A & B were from the same sci-RNA-seq3 experiment, but with 
nuclei which were sequenced separately. g, Although most of the embryos 
from the same approximate stage (e.g. E14.0-E14.75) were included in the same 
sci-RNA-seq3 experiment (Supplementary Table 1), we profiled extra nuclei in 
some experiments for a handful of timepoints to ensure sufficient coverage. 

Here we sought to leverage those instances to check for potential batch effects 
across experiments. For this, on the embedding learned from all of the data, we 
asked whether these cells’ profiles are more similar to cells from the same 
experiment or, alternatively, cells from the same time window. Top: for a 
random subset of cells from E14.75 which were profiled in experiment run_22 
(primarily E17.0-E17.75), we performed a k-nearest neighbors (kNN, k = 10) 
approach in the global 3D UMAP to find the nearest neighboring cells either 
from the same experiment (red) or the same time window (E14.0-E14.75) but 
different experiment (blue). The percentages of the nearest neighboring cells 
from the two groups for individual cells are presented in the histogram. 
Bottom: a similar analysis was performed for a random subset of cells from 
E13.5 & E13.75 which were profiled in experiment run_19 (primarily E10.5-E11). 
In both examples, we observe that nearest neighbors are overwhelmingly cells 
from a different experiment (but the same time window), rather than cells from 
the same experiment (but a different time window). h, Cells processed in 
different experiments are well-integrated without batch correction. To further 
check for potential batch effects, we generated co-embeddings of samples 
processed from adjacent timepoints in different experiments, without batch 
correction. i, We also generated a co-embedding of cells from run_23_A (red) 
and run_23_B (green), which derived from the same sci-RNA-seq3 experiment 
but were sequenced on different NovaSeq runs. j, Embeddings of pseudo-bulk 
RNA-seq profiles of 74 mouse embryos in PCA space with visualization of top 
three PCs. Embryos are colored by either developmental stage (left) or data-
inferred sex (right). k, Ambient noise (e.g. as might be due to transcript leakage) 
was assessed by examining hemoglobin and collagen transcripts. The 
distribution of the number of reads mapping to each selected hemoglobin or 
collagen gene across cells, for the cell type that is expected to express that gene 
at high levels (red) vs. all other cell types (blue). The mean UMI counts of cells in 
each group are also reported. The overall levels of ambient noise as assessed by 
these transcripts was low, e.g. the mean number of UMIs for Hbb-bs was 10.8 in 
definitive erythroid cells and 0.26 in all other cells, and for Col1a1 was 186 in 
pre-osteoblasts vs. 1.23 in all other cells. l, Quantitatively estimating cell 
number for individual mouse embryos as a function of developmental stage. 
Based on the experimentally estimated cell numbers of the 12 embryos 
(ranging from E8.5 to P0), we applied polynomial regression (degree = 3) to fix a 
curve across embryos between the embryonic day and log2-scaled cell number. 
P0 was treated as E19.5 in the model. m, The estimated “doubling time” of the 
total cell number in a whole mouse embryo are plotted as a function of 
timepoints. The timepoints with the longest (E17.0) and shortest (E8.5) 
estimated “doubling times” are highlighted.
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Extended Data Fig. 3 | Cell type annotations. For each of the 26 major cell clusters, we performed subclustering and then annotated each of 190 subclusters 
using at least two literature-nominated marker genes per cell type label (Supplementary Table 5).



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Transcriptional heterogeneity in the posterior 
embryo during early somitogenesis. a, A validation sci-RNA-seq3 dataset of 
mouse embryos from somites 8 to 21. To validate findings related to differences 
between embryos staged with early vs. late somite counts, particularly in NMPs, 
we profiled another 12 precisely staged mouse embryos, ranging from 8 to 21 
somites, in an independent sci-RNA-seq3 experiment. The resulting library was 
sequenced on an Illumina NextSeq 2000, resulting in 104,671 cells in total, with a 
median UMI count of 513 and a median gene count of 446 per cell. The number of 
cells profiled from each embryo. b, 2D UMAP visualization of the validation 
dataset (all cell types). c, The same UMAP as in panel b, with cells colored by 
somite count of the originating embryo. d, Re-embedded 2D UMAP of 9,686 cells 
from NMPs & spinal cord progenitors (cluster 11) and mesodermal progenitors 
(Tbx6 + ) (cluster 14) in panel b. Cells are colored by either the original annotation 
(top) or somite count (bottom). e, The same UMAP as in panel d, colored by gene 
expression of marker genes which appear specific to different subpopulations of 
NMPs: column 1: differences between neuroectodermal (Sox2 + ) vs. mesodermal 
(Tbx6 + ) fates; column 2: the differentiation of bipotential NMPs (T +, Meis1-) 
towards either fate; column 3: earlier (Cdx1 + ) vs. later (Hoxa10 + ) NMPs. 
References for marker genes are provided in Supplementary Table 12. f, Within 
the cells shown in panel d, the proportion of cells (y-axis) which express either 
Cdx1 (top) or Hoxa10 (bottom) are plotted as a function of somite count of the 
originating embryo. g, Transcriptional heterogeneity in the posterior embryo 
during the early somitogenesis. The same UMAP as in Fig. 2g, colored by gene 
expression of marker genes which appear specific to the subpopulation of 
notochord cluster that is Noto +, including posterior Hox genes (Hoxc6, Hoxc8, 
Hoxa10), and genes involved in Notch signaling (Hes7), Wnt signaling (Wnt3) and 
mesodermal differentiation (Tbx6). h, Cell proportions falling into the ciliated 
nodal cell cluster for embryos with different somite counts. i, The same UMAP as 

in Fig. 2g, colored by gene expression of marker genes which appear specific to 
the subpopulation of the notochord Noto- and more strongly Shh +, including 
Sox10, Bmp3, Nrg1, and Erbb4. j, The same UMAP as in Fig. 2i, colored by gene 
expression of marker genes which appear specific to the posterior gut 
endoderm, including T, Hoxa7, Hoxb8, Hoxd13, and Hoxc9. k, Checking the 
consistency of Npm1 signatures across different batches. First, we downsampled 
the dataset to ~1 M cells using geosketch79 and performed k-means clustering to 
ensure that each cluster contained roughly 500 cells. Second, we aggregated 
UMI counts for cells within each cluster to generate 2,289 meta-cells, and 
normalized the UMI counts for each meta-cell followed by log2-transformation. 
Third, we performed Pearson correlation between each protein-coding gene and 
Npm1, and selected genes with correlation coefficients > 0.6 (738 genes, ~3% of 
the total protein coding genes). A gene set enrichment analysis suggests that the 
module is associated with RNP complexes (corrected p-value = 1.4e-105), 
cytoplasmic translation (corrected p-value = 2.8e-90), and ribosomal proteins 
(corrected p-value = 7.4e-71). Finally, we summed the normalized UMI counts of 
these genes to calculate a Npm1 signature for individual cells. The resulting Npm1 
signatures are subsetted in four plots, from left to right: by sci-RNA-seq3 
experiment, embryo harvest date, litter of embryos, or shipment batch. l, Same 
as panel k, but further stratified by the top 10 abundant major cell clusters. 
Boxplots, in panel k (n = 1,144,141 cells) and l (n = 299,725 cells in Mesoderm, 
n = 127,150 cells in White blood cells, n = 104,205 cells in CNS neurons, n = 73,005 
cells in Definitive erythroid, n = 66,772 cells in Epithelial cells, n = 64,845 cells in 
Hepatocytes, n = 62,951 cells in Endothelium, n = 61,249 cells in Muscle cells, 
n = 52,748 cells in Neuroectoderm and glia, n = 45,940 cells in Intermediate 
neuronal progenitors), represent IQR (25th, 50th, 75th percentile) with whiskers 
representing 1.5× IQR.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Transcriptional heterogeneity in renal development. 
a, The same UMAP as in Fig. 3a, colored by expression of marker genes which 
appear specific to anterior intermediate mesoderm (Pax2 +, Pax8 +, Sim1 +, 
Lhx1 +, Ret +), posterior intermediate mesoderm (Pax2 +, Pax8 +, Gdnf1 +, Wt1 +, 
Osr1 +, Hoxc6 +), ureteric bud (Ret +, Wnt11 +) or metanephric mesenchyme 
(Wt1 +, Six2 +, Eya1 +). References for marker genes are provided in 
Supplementary Table 5. b, The predicted absolute number (log2 scale) of cells 
of each renal cell type at each timepoint. The predicted absolute number was 
calculated by the product of its sampling fraction in the overall embryo and the 
predicted total number of cells in the whole embryo at the corresponding 
timepoint (Fig. 1b). For each row, the first timepoint with at least 10 cells 
assigned that cell type annotation is labeled, and all observations prior to that 
timepoint are discarded. c, The same UMAP as in Fig. 3a, colored by expression 
of marker genes which appear specific to podocytes (Nphs1 +, Nphs2 +), 
proximal tubule cells (Slc27a2 +, Lrp2 +), ascending loop of Henle (Umod +, 
Slc12a1 +), distal convoluted tubule (Slc12a3 +, Pvalb +), collecting duct 
intercalated cells (Atp6v1g3 +, Atp6v0d2 +) or collecting duct principal cells 
(Aqp2 +, Hsd11b2 +). References for marker genes are provided in Supplementary 

Table 5. d, The same UMAP as Fig. 3a is shown three times, with colors 
highlighting cells from before E18.75 (left), E18.75 (middle), or P0 (right). 
Dotted cycles highlight cells which appear to correspond to the proximal 
tubule. e, The same UMAP as in Fig. 3a, colored by expression of marker genes 
which appear specific to the ureteric bud tip (Wnt11 +, Ret +, Etv5 +) or stalk 
(Wnt7b +, Tacstd2 +)40. Ureteric bud tip and stalk are highlighted by blue and red 
circles, respectively. f, Re-embedded 2D UMAP of 2,894 cells from connecting 
tubule cells, collecting duct principal cells (CD-PC), and collecting duct 
intercalated cells (CD-IC). Cells are colored by either their initial annotations 
(top) or timepoint (bottom). Black circles highlight the cells which appear to be 
either type A (A-IC) or type B (B-IC) intercalated cells. g, The same UMAP as in 
panel f, colored by expression of marker genes specific to CD-IC (Atp6v1b1 + ), 
A-IC (Kit +, Slc4a1 +), B-IC (Slc26a4 +), CD-PC (Aqp2 +, Aqp4 +), and connecting 
tubule (Aqp2 +, Aqp4-) (Supplementary Table 12). h, The same UMAP as in 
Fig. 3a, colored by expression of marker genes which appear specific to 
connecting tubule cells (Aqp2 +, Aqp3 +, Aqp4-) or collecting duct cells (Aqp2 +, 
Aqp3 +, Aqp4 +, Aqp5 +)80.
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Extended Data Fig. 6 | Transcriptional heterogeneity in mesenchyme.  
a, The same UMAP as in Fig. 3d, colored by expression of marker genes which 
appear specific to lung mesenchyme (Tbx5 +, Tbx4 + ), hepatic mesenchyme 
(Reln + ), gut mesenchyme (Nkx2-3 + ), foregut mesenchyme (Barx1 + ), amniotic 
mesoderm (Postn + ), renal medullary stromal cells (Foxd1 +, Tcf21 + ), renal 
cortical stromal cells (Pax2 +, Pax8 + ), meninges (Vtn + ), airway smooth muscle 
cells (Trpc6 +, Tbx5 + ), gastrointestinal smooth muscle cells (Nkx2-3 + ), 
proepicardium or mesothelium (Msln + ). References for marker genes are 
provided in Supplementary Table 12. b, Published in situ hybridization (ISH) 
images support our annotations of lateral plate and intermediate mesoderm 
derivatives. In each subpanel (defined by dotted rectangles), three rows are 

shown for one or two lateral plate and intermediate mesoderm derivative cell 
types. Notably, each of these cell types was annotated based on spatial mapping 
analysis, as shown in Fig. 3e. Top: The same UMAP as in Fig. 3d, colored by gene 
expression of marker genes which appear specific to the given cell type. Middle: 
Virtual in situ hybridization (ISH) images of individual genes from one selected 
section (E1S1) from E14.5 of the Mosta data (https://db.cngb.org/stomics/
mosta/). Bottom: In situ hybridization (ISH) images of individual genes were 
obtained from the Jackson Laboratory Mouse Genome Informatics (MGI) 
website (https://www.informatics.jax.org/). The original reference for these 
ISH images are81–83.

https://db.cngb.org/stomics/mosta/
https://db.cngb.org/stomics/mosta/
https://www.informatics.jax.org/
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Extended Data Fig. 7 | Assessing the potential origins of LPM subsets 
annotated as renal cortical & medullary stromal cells. a, Re-embedded 2D 
UMAP of 39,468 cells from renal cortical & medullary stromal cells. Cells are 
colored by either annotation (top) or timepoint (bottom, after downsampling 
to a uniform number of cells per time window). b, Top: The same UMAP as in 
panel a, colored by gene expression of marker genes which appear specific to 
renal cortical & medullary stromal cells. Both cell types express Foxd1, Prrx1, 
Pdg fra, and Pdg frb, but only renal cortical stromal cells express Six2. Middle: 
Virtual in situ hybridization (ISH) images of individual genes. Bottom: ISH 
images of individual genes. c, Top: The same UMAP as in panel a, colored by 
gene expression of marker genes which appear specific to renal cortical 
stromal cells (Eya1 +, Pax2 + ), and renal medullary stromal cells (Lrriq1 +, 
Acta2 +, Pparg +, Myh11 + ). Middle: Virtual ISH images of individual genes. 
Bottom: ISH images of individual genes. d, Re-embedded 2D UMAP of 206,908 
cells from renal cortical & medullary cells, anterior intermediate mesoderm, 
posterior intermediate mesoderm, metanephric mesenchyme, and splanchnic 

mesoderm. Cells are colored by either their initial annotations (left) or 
timepoint (right, after downsampling to a uniform number of cells per time 
window). e, The average normalized expression of Foxd1 over time is shown for 
renal cortical stromal cells (left) and renal medullary stromal cells (right). Gene 
expression was normalized by the size factor estimated by Monocle/3. f, Top: 
The same UMAP as in panel a, colored by gene expression of marker genes 
which appear specific to two subsets of renal stromal cells: medullary renal 
stromal cells (Zeb2 +, Plcb1 + ) and cortical renal stromal cells (Ntn1 +, Zbtb7c +, 
Sema3d + ), respectively. Middle: Virtual ISH images of individual genes. 
Bottom: ISH images of individual genes. In panel b, c, and f, virtual ISH images 
of individual genes were obtained from one selected section (E1S1) from E14.5 
of the Mosta data (https://db.cngb.org/stomics/mosta/). ISH images were 
obtained from the Jackson Laboratory Mouse Genome Informatics (MGI) 
website (https://www.informatics.jax.org/). The original reference for these 
ISH images are81,82,84.

https://db.cngb.org/stomics/mosta/
https://www.informatics.jax.org/


Extended Data Fig. 8 | The emergence of mesenchymal subtypes from the 
patterned mesoderm. a, The predicted absolute number (log2 scale) of cells 
of each mesoderm cell type at each somite count. The predicted absolute 
number was calculated by the product of its sampling fraction in the overall 
embryo and the predicted total number of cells in the whole embryo at the 
corresponding timepoint. Because cell numbers were only predicted for the 
broader bins (Fig. 1b), rather than individual somite counts, these were used for 
roughly corresponding sets (0-12 somite stage: E8.5; 14-15 somite stage: E8.75; 
16-18 somite stage: E9.0; 20-23 somite stage: E9.25; 24-26 somite stage: E9.5; 27-
31 somite stage: E9.75; 32-34 somite stage: E10.0). For each row, the first somite 
count with at least 10 cells assigned that cell type annotation is labeled, and all 
observations prior to that somite count are discarded. b, Re-embedded 2D 
UMAP of 110,753 cells from the selected cell types of mesoderm (clusters 1-12 as 
listed in panel a) from 5-20 somite stage embryos. c, The same UMAP as in panel 
b, but with inferred progenitor cells colored by derivative cell type with the 
highest mutual nearest neighbors (MNN) pairing score. d, Normalized MNN 

pairing score between mesodermal territories (column) and their inferred 
derivative cell types (row) from 5-20 somite stage embryos. The selected cell 
populations are first embedded into 30 dimensional PCA space, and then for 
individual derivative cell types, MNN pairs (k = 10 used for k-NN) between their 
earliest 500 cells (in absolute time) and cells from mesodermal territories are 
identified. e, Re-embedded 2D UMAP of 275,000 cells from the selected cell 
types of mesoderm (clusters 1-18 as listed in panel a) from 26-34 somite stage 
embryos. f, The same UMAP as in panel e, but with inferred progenitor cells 
colored by derivative cell type with the highest MNN pairing score. g, Normalized 
MNN pairing score between mesodermal territories (column) and their inferred 
derivative cell types (row) from 26-34 somite stage embryos. The selected cell 
populations are first embedded into 30 dimensional PCA space, and then for 
individual derivative cell types, MNN pairs (k = 10 used for k-NN) between their 
earliest 500 cells (in absolute time) and cells from mesodermal territories are 
identified.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | The timing and trajectories of retinal development, 
and marker gene expression for different neuroectodermal territories.  
a, Re-embedded 3D UMAP of 160,834 cells corresponding to the retinal 
development from E8 to P0. Cells are colored by either their initial annotations 
(left) or timepoint (right, after downsampling to a uniform number of cells per 
time window). Arrows highlight five of the main trajectories observed.  
b, Re-embedded 2D UMAP of 160,834 cells corresponding to the retinal 
development from E8 to P0. The same UMAP as in panel a, except 2D instead of 
3D projection. c, The same UMAP as in panel b, colored by gene expression of 
marker genes for each annotated retinal cell type. References for marker genes 
are provided in Supplementary Table 5. d, Re-embedded 2D UMAP of the subset 
of cells in panel a from stages <= E12.5. Cells are colored by either their initial 
annotations (top) or timepoint (bottom). e, The same UMAP as in panel d, 
colored by gene expression of markers of retinal progenitor cells RPCs (Pax2 +, 
Pax6 +, Rax +, Fg f15 +), RPE (Tyr +), and the optic stalk (Pax2 +, Vax1 +, Rax−). 
References for marker genes are provided in Supplementary Table 12. f, Rescaled 
proportion of profiled cells (log2; y-axis) for each cell type shown in panel a, as 
a function of developmental time (x-axis). For rescaling, the % of profiled cells 
in the entire embryo assigned a given annotation was multiplied by 100,000, 
prior to taking the log2. Line plotted with geom_smooth function in ggplot2.  
g, Schematic of retinal cell types emphasizing the timing at which they first 
appear and their inferred developmental relationships from E8-P0, based on 
manual review of the trajectories. The gray lines indicate subsets of the eye 
field and RPE subsequently annotated as the optic stalk (label 16) and iris 
pigment epithelium (label 17), respectively. Cell types are positioned along the 

x-axis at the timepoint at which they are first observed (as shown in panel h).  
h, The predicted absolute number (log2 scale) of cells of each retinal cell type 
at each timepoint. The predicted absolute number was calculated by the 
product of its sampling fraction in the overall embryo and the predicted total 
number of cells in the whole embryo at the corresponding timepoint (Fig. 1b). 
For each row, the first timepoint with at least 10 cells assigned that cell type 
annotation is labeled, and all observations prior to that timepoint are discarded. 
i, Re-embedded 2D UMAP of a subset of cells in panel a corresponding to eye 
field, RPE and CMZ. Cells are colored by either their initial annotations (top) or 
timepoint (bottom). j, The same UMAP as in panel i, colored by gene expression 
of marker genes for IPE or pigment epithelium more generally (Tyr & Oca2). 
RPE: retinal pigment epithelium. CMZ: ciliary marginal zone. RPCs: retinal 
progenitor cells. IPE: iris pigment epithelium. References for marker genes are 
provided in Supplementary Table 12. k, Re-embedded 2D UMAP of retinal 
ganglion cells. Cells are colored by either clusters (left; Leiden clustering 
followed by downselection to late-appearing clusters) or timepoint (right).  
l, The top 3 TF markers of the 15 clusters shown in panel k. Marker TFs were 
identified using the FindAllMarkers function of Seurat/v363. Their mean gene 
expression values in each cluster are represented in the heatmap, calculated 
from original UMI counts normalized to total UMIs per cell, followed by natural-
log transformation. The full list of significant TFs is provided in Supplementary 
Table 14. m, Marker gene expression for different neuroectodermal territories. 
The same UMAP as in Fig. 4a, colored by gene expression of marker genes for 
each neuroectodermal territory. References for marker genes are provided in 
Supplementary Table 5.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Subtypes of intermediate neuronal progenitors, 
glutamatergic & GABAergic neurons, and early astrocytes, and the timing 
of neuronal subtype differentiation from the patterned neuroectoderm.  
a, Re-embedded 2D UMAP of 628,251 cells within the intermediate neuronal 
progenitors major cell cluster, colored by either cell type (top) or 
developmental stage (bottom, after downsampling to a uniform number of 
cells per time window). b, The same UMAP as in panel a, colored by gene 
expression of marker genes which appear specific to intermediate neuronal 
progenitors (Eomes +, Pax6 + ), upper-layer neurons (Satb2 +, Pou3f2 +, Pou3f3 + ), 
deep-layer neurons (Tbr1 +, Bcl11b +, Fezf2 + ), or subplate neurons (Kcnab1 +, 
Chrna5 +, Syt6 +, Foxp2 + ). References for marker genes are provided in 
Supplementary Table 5. c, The same UMAP as in Fig. 4e, with cells colored by 
timepoints. d, Left: Neuronal subtypes shown in Fig. 4e originate from anterior 
vs. posterior of neuroectoderm, and then subsequently display inhibitory vs. 
excitatory functions after differentiation. Right: The same UMAP as in Fig. 4e, 
colored by gene expression of marker genes which appear specific to anterior 
(Otx2 + ) vs. posterior (Hoxb4 +, Hoxd4 + ) origins, or inhibitory (Slc32a1 +, 
Gad1 + ) vs. excitatory (Slc17a6 + ) functions. References for marker genes are 
provided in Supplementary Table 12. e, 3D visualization of gene expression 
variation in 11 spinal interneurons, colored by cell type (left) or timepoint 
(right). f, Correlations between top four PCs and timepoints (top row) or cell 
types (bottom row). Boxplots (n = 97,842 cells) represent IQR (25th, 50th, 75th 
percentile) with whiskers representing 1.5× IQR. Red triangles and green stars 
highlight glutamatergic and GABAergic spinal cord interneurons, respectively. 
g, Subtypes of early astrocytes and their inferred progenitors. Re-embedded 
2D UMAP of 5,928 cells within the astrocytes from stages <E13. h, Composition 
of embryos from each 6-hr bin by different subpopulations of astrocytes. i, The 
same UMAP as in panel g, colored by gene expression of marker genes which 

appear specific to anterior (Otx2 + ) or posterior (Hoxb4 +, Hoxd4 +, Hoxc6 + ) 
astrocytes, VA1-astrocytes (Pax6 +, Reln + ), VA2-astrocytes (Pax6 +, Reln +, 
Nkx6-1 +, Slit1 + ), and VA3-astrocytes (Nkx6-1 +, Slit1 + ). References for marker 
genes are provided in Supplementary Table 12. j, The same UMAP of the 
patterned neuroectoderm as in Fig. 4a, with inferred progenitor cells of 
astrocytes colored by the frequency that has been identified as a MNN with 
either VA2-astrocytes (left) or VA3-astrocytes (right). k, For those three cell 
types (cerebellar Purkinje cells, precerebellar neurons, spinal dI6 interneurons) 
which were excluded from the analyses represented in Fig. 4g, h due to having 
fewer than 50 MNN pairs, we performed a recursive mapping to identify 
whether they might share progenitors with another derived cell type, essentially 
repeating the analysis but attempting to map the earliest cells of these cell 
types to other derivative cell types rather than the patterned neuroectoderm. 
The heatmap shows the number of MNN pairs between pairwise cell types.  
In brief, this analysis suggests that spinal dl2 interneurons and cerebellar 
astrocytes share progenitors, while the progenitors of the other two re-analyzed 
cell types remain ambiguous. l, Gene expression across timepoints, for the 
specific TF markers of spinal dI1 (left) or spinal dI5 (right) interneurons. m, Left: 
gene expression for 18 selected TFs, across progenitor cells of dI1-5 from the 
neuroectodermal territories. Right: gene expression for 18 selected TFs across 
21 time bins for dl1-5 spinal interneurons in which the TF has been nominated as 
marker TF. For individual spinal interneurons (each row), the first time bin 
involves the earliest 500 cells, then the left cells break into 20 bins ordered by 
their timepoints and with the same number of cells in each bin. Only cells from 
stages <E13 are included. n, For each neuronal subtype in Fig. 4g, h, we selected 
the annotation in the patterned neuroectoderm to which the most inferred 
progenitors had been assigned, and plotted the distribution of timepoints for 
that subset of inferred progenitors.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Identifying equivalent cell type nodes across 
datasets, and systematically nominating TFs and other genes for cell type 
specification. a, The MNN approach used for graph construction is robust to 
subsampling and choice of the k parameter. The percentage of MNNs between 
different cell types, from the same embryo (blue) or from different embryos 
(red), is shown for each developmental system during organogenesis & fetal 
development, for all cells (left), cells from E8.0 to E10.0 (middle), or cells from 
E13.0 to E13.75 (right). b, The Spearman correlation coefficients of the 
normalized number of MNNs between cell types, comparing random 
subsampling of 80% of the cells to the full set of cells. The subsampling was 
repeated 100 times. The number of MNNs between cell types were normalized 
by the total number of possible MNNs between them. Boxplot (n = 1,200 
correlation coefficients) represents IQR (25th, 50th, 75th percentile) with 
whiskers representing 1.5× IQR. Outliers are shown as the dots outside the 
whiskers. c, The Spearman correlation coefficients of the normalized number 
of MNNs between cell types, comparing various choices for k parameter (k = 5, 
10, 20, 30, 40, 50) and the choice of k parameter (k = 15) when applying kNN to 
the developmental systems during organogenesis & fetal development. The 
number of MNNs between cell types were normalized by the total number of 
possible MNNs between them. Colors and numbers in panels a-c correspond to 
each developmental system annotations listed at the top right. d, 1,155 edges 
with the number of normalized MNNs > 1 were manually reviewed for biological 
plausibility. Histogram of edges that were accepted or rejected as a function of 
normalized MNN score. e, Integration of scRNA-seq profiles from gastrulation 
and early somitogenesis to identify equivalent cell type nodes across datasets 
generated by distinct technologies. 2D UMAP visualization of co-embedded 
cells, derived both from a gastrulation dataset based on cells from E6.5 to E8.5 
generated on the 10x Genomics platform7 (n = 108,857 cells) and the earliest ~1% 
of this dataset (0-12 somite stage embryos) generated by sci-RNA-seq3 
(n = 153,597 nuclei), after batch correction63. This is essentially an updated 
version of an analysis that we have done previously8. We performed clustering 
and cell type annotation on the integrated co-embedding, as shown. f, The 
same UMAP as in panel e is shown twice, with colors highlighting cells/nuclei 
from Pijuan-Sala’s dataset7 (left) or early somitogenesis8 (right). g, For cells 
from the original Pijuan-Sala’s dataset7, we quantify and display the overlap 
between the original annotations and the new annotations shown in panel e. 
For each row, the proportions of cells that are distributed across each column 

are transformed to z-score. h, For nuclei from the early somitogenesis 
embryos8, we quantify and display the overlap between the original 
annotations and the new annotations shown in panel e. These mappings were 
the basis for dataset equivalence edges between the “gastrulation” and 12 
“organogenesis & fetal development” subsystems. For each row, the 
proportions of cells that are distributed across each column are transformed to 
z-score. CLE: Caudal lateral epiblast. NMPs: Neuromesodermal progenitors.  
i, A Waddington landscape cartoon illustrating how a cell type transition might 
be broken into three phases. j, Given a directional edge between two nodes, 
A → B, we identified the subset of cells within each node that were either MNNs 
of the other cell type (inter-node; groups 2 & 3) or MNNs of those cells (intra-
node; groups 1 & 4). If A → B, this effectively models the transition as group 
1 → 2 → 3 → 4. k, Histograms of the number of edges in which TFs are 
differentially expressed. The left histogram counts only genes when they are 
differentially expressed across the early phase of an developmental 
progression edge, while the right histogram counts genes when they are 
differentially expressed in any phase of all edges. l, Same as panel k, but for all 
genes rather than only TFs. m, Re-embedded 2D UMAP of 988 cells 
participating in groups 1-4 of the transition from anterior primitive streak → 
definitive endoderm. Cells are colored by either cell type annotations (top) or 
estimated pseudotime (bottom) using Monocle314. n, For cells in panel m, 
normalized gene expression of selected genes are plotted as a function of 
estimated pseudotime. Gene expression values were calculated from original 
UMI counts normalized to total UMIs per cell, followed by natural-log 
transformation. The line of gene expression was plotted by the geom_smooth 
function in ggplot2. We manually added an offset based on their expression at 
pseudotime = 0 to the y-axis for individual genes. o, A sub-graph of Fig. 5g, 
including hematopoietic stem cells (Cd34 + ) and 12 cell type nodes which 
appear derived from it. p, Re-embedded 2D UMAP of 37,750 cells from 
hematopoietic stem cells (Cd34 + ), colored by developmental stage (after 
downsampling to a uniform number of cells per stage). q, The same UMAP as in 
panel p, but with inferred progenitor cells (the cells participating in the MNNs 
that support the edges) colored by derivative cell type with the most frequent 
MNN pairs. r, The same UMAP as in panel p, colored by gene expression of 
selected top key TFs which were upregulated during the “early transition” for 
each derivative.



Article

Extended Data Fig. 12 | Rapid shifts in transcriptional state occur in a 
restricted subset of cell types upon birth, and differ between vaginally and 
C-section delivered pups. a, The number of nuclei profiled for each animal 
shown in Fig. 6c. A small number of nuclei from additional fetal samples from 
the original set of experiments were also profiled for quality control (samples 
10-12). b, 2D UMAP visualization of the birth-series dataset (n = 962,697 cells). 
Colors correspond to 26 major cell cluster annotations (Fig. 1b, c). Two major 
cell clusters (the primitive erythroid and testis & adrenal major cell clusters) 
shown in the original dataset but missed here are highlighted in gray. Primitive 
erythroid cells are not present at these timepoints and testis & adrenal cells are 
collapsed to the epithelial cells major cell cluster due to their low numbers.  
c, Re-embedded 2D UMAP of 19,696 cells of the adipocyte major cell cluster.  

d, Re-embedded 2D UMAP of 7,986 cells of the lung & airway major cell cluster. 
e, For these three major cell clusters, we co-embedded cells from three 
vaginally delivered pups (samples 1-3 in Fig. 6c) and six pups delivered by 
C-section (samples 4-9 in Fig. 6c), followed by subsetting a uniform number of 
cells per sample. For cells from each of the three vaginally delivered pups, we 
calculated the number of their 10 nearest neighbors in the PCA embedding 
(n = 30 dimensions) from other samples. f, Re-embedded 2D UMAP of cells 
from these three major cell clusters, based on cells from three vaginally 
delivered pups and six pups delivered by C-section. For each row, the same 
UMAP is shown multiple times, with colors highlighting cells from individual 
pups (or two pups, in the case of the 0-min C-section timepoint).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.
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For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection No software was used except Illumina RTA basecalling at this stage.

Data analysis The Python (version 3.10.10) and R (version 3.6.3 and 4.2.3) codes used to analyze the RNA-seq data are available at https://github.com/
ChengxiangQiu/JAX_code. The following common, freely available data analysis software were used to analyze data: bcl2fastq version 2.20 
(https://support.illumina.com), deML version 1.1.3 (https://github.com/grenaud/deML), HTseq version 0.6.1 (https://github.com/htseq/
htseq), trim_galore version 0.6.5 (https://github.com/FelixKrueger/TrimGalore), STAR version 2.6.1d (https://github.com/alexdobin/STAR), 
scrublet version 0.1 (https://github.com/swolock/scrublet), Scanpy version 1.6.0 (https://github.com/theislab/scanpy), Monocle version 3, 
and 3-alpha (https://cole-trapnell-lab.github.io/monocle3), Seurat version 3 (https://github.com/satijalab/seurat), Tangram version 1.0.3 
(https://github.com/broadinstitute/Tangram), Cytoscape version 3.9.1 (https://cytoscape.org/), geosketch version 1.2  (https://github.com/
brianhie/geosketch).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data generated in this study can be downloaded in raw and processed forms from the NCBI Gene Expression Omnibus under accession number GSE186069 and 
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GSE228590. The data are also available at https://omg.gs.washington.edu/, together with a browser that enables its visual exploration. The published datasets 
analyzed for this study were retrieved from either the GEO repository (GSE44183, GSE100597, GSE109071), https://github.com/MarioniLab/
EmbryoTimecourse2018, or https://db.cngb.org/stomics/mosta/ and re-processed. Published ISH images were obtained from the MGI website (https://
www.informatics.jax.org/). Mouse reference genome (mm10) and gene annotations (GENCODE VM12) were used for read alignment and gene count matrix 
generation.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. 
Our previous study (Qiu et al., 2022), which profiled 154,313 cells from 12 mouse embryos at early somitogenesis stage, successfully 
identified the same 30 cell types as those identified in E8.5 data by Pijuan-Sala et al. (2019). The extensive data, along with the separate 
processing of individual somite-resolved embryos, enabled the detection of significant substructures, such as A-P floor plates and various 
hindbrain segmentations. In this study, we applied the same technology to profile single nuclei from mouse embryos, identifying over 200 
distinct cell types and focusing on several specific tissues and organs. This comprehensive analysis suggests that our sample size is adequate 
for investigating cell states and developmental trajectories during mouse organogenesis. In addition, we experimentally quantified the total 
DNA of staged embryos and estimated that the embryo grows 3,000-fold from E8.5 to P0. Therefore, despite the large number of nuclei 
profiled, our cellular coverage remains limited, ranging from 0.5-fold for early stages (summing 6 embryos, somite counts 7-12) to 0.002-fold 
immediately before birth (summing 6 embryos, E17.5-E18.75).

Data exclusions When we took a first round of cell-embedding, we noticed that one mouse embryo at E14.5 had a grossly reduced proportion of neuronal 
cells. This particular sample had been divided during pulverization, and we suspect that large portions of the frozen embryo did not make it 
into the experiment. We removed cells from this E14.5 embryo.

Replication Firstly, we performed 15 sci-RNA-seq3 experiments, and the data from each experiment overlapped well, demonstrating high replicability. We 
have employed various methods to confirm the data quality. Secondly, to validate our findings regarding posterior embryos, we generated an 
independent validation dataset comprising somites 8-21, and the findings were validated. Thirdly, to validate our observations of abrupt 
transcriptional changes before and after birth, we generated a new "birth-series" dataset, and the findings were validated. Finally, for the 
spatial mapping analysis, we utilized publicly available ISH images to verify our cell-type annotations within the lateral plate mesoderm.

Randomization From a total of 523 embryos staged at the Jackson Laboratory, we selected 75 for whole embryo scRNA-seq, targeting one embryo for every 
somite count from 0 to 34 (2-hr increments), and one embryo for every 6-hr bin from E10 to P0. Embryos used in experiments were randomly 
selected from each timepoint before sample preparation.

Blinding In this study, investigators were blinded to group allocation during sample collection and data generation/analysis: embryo collection and sci-
RNA-seq3 data generation/analysis were performed by different researchers in different locations. 
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 83 precisely staged C57BL/6NJ (strain# 005304) mice were obtained at The Jackson Laboratory. Mice of both sexes were included in 
the study, with a roughly equal number of males and females.

Wild animals Study did not involve wild animals

Field-collected samples Study did not involve field-collected samples

Ethics oversight All animal use at The Jackson Laboratory was done in accordance with the Animal Welfare Act and the AVMA Guidelines on 
Euthanasia, in compliance with the ILAR Guide for Care and Use of Laboratory Animals, and with prior approval from The Jackson 
Laboratory animal care and use committee (ACUC) under protocol AUS20028.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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