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The house mouse (Mus musculus) is an exceptional model system, combining genetic
tractability with close evolutionary affinity to humans*% Mouse gestation lasts only 3
weeks, during which the genome orchestrates the astonishing transformation of a
single-cell zygote into a free-living pup composed of more than 500 million cells.
Here, to establish a global framework for exploring mammalian development, we
applied optimized single-cell combinatorial indexing? to profile the transcriptional
states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals
spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these
data, we annotate hundreds of cell types and explore the ontogenesis of the posterior
embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons.

We leverage the temporal resolution and sampling depth of these whole-embryo
snapshots, together with published data*® from earlier timepoints, to construct a
rooted tree of cell-type relationships that spans the entirety of prenatal development,
from zygote to birth. Throughout this tree, we systematically nominate genes
encodingtranscription factors and other proteins as candidate drivers of the in vivo
differentiation of hundreds of cell types. Remarkably, the most marked temporal
shiftsin cell states are observed within one hour of birth and presumably underlie the
massive physiological adaptations that must accompany the successful transition of a
mammalian fetus to life outside the womb.

Since 2017, many studies have applied single-cell methods to char-
acterize biological development at the scale of the whole organ-
ism’". Most such studies are time series, in which each embryo is
analysed at one developmental stage—by profiling of transcription
viasingle-cell RNA sequencing (scCRNA-seq) or chromatin accessibility
viasingle-cell sequencing assay for transposase-accessible chromatin
(scATAC-seq)—resulting in a series of snapshots that can be pieced
together, analogous to the single frames that are put together to cre-
ateafilm. Inevitably, there are trade-offs between the developmental
spanstudied, the temporal resolution and the sampling depth of the
snapshots taken. For example, 2 studies intensely profiled mouse
gastrulation, together quantifying gene expression in 150,000 cells
frommore than 500 embryos spanning embryonic day (E)6.5to E8.5"",
and another study profiled 2 million nuclei from 61 embryos span-
ning £9.5-E13.5™. We recently integrated such scRNA-seq datasets to

produce aninitial tree of mouse developmental cell states spanning
E3.5-E13.5%. However, early organogenesis was coarsely sampled (with
24-hintervals), and the remainder of prenatal development remained
unsampled at the whole-organism scale, limited in part by the sheer
number of cells.

Ontogenetic staging

To progress towards amore comprehensive, continuous view of tran-
scriptional dynamics throughout prenatal development, we sought
to deeply sample single nuclei from mouse embryos precisely staged
at2-to 6-hintervals spanning late gastrulation (E8) to birth (postnatal
day (P)0).Instaging embryos, we distinguish between gestational age
and developmental progression. Mouse gestational age, based on the
observation of a vaginal plug for which noon on that day is declared
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Fig.1|Asingle-cell transcriptional time-lapse of mouse development, from
gastrulato pup.a, Embryos were collected and precisely staged based on
morphological features, including by counting somite numbers (up to E10) and
anautomated process thatleverages limb bud geometry (E10-E15) (Methods).
Eachembryo was assigned to one of 45 temporal bins at 6-h increments from
E8to PO, and to more highly resolved 2-h bins at earlier timepoints based on
somite counts (0-34 somites). The first three bins (E8.0,E8.25and E8.5) are
combined. Embryos with somite counts1,13and 19 are missing from the series
(blue ticks insub-axis). The number (log, scale) of nuclei profiled ateach
timepoint, is shown adjacent to the horizontal timeline, for 2-h bins (0-34
somites) for E8-E10 and for 6-h bins for E8-P0. b, Composition of embryos
fromeach 6-h bin by major cell cluster. The y axisis scaled to the estimated cell
number (log,scale) ateach timepoint. In brief, weisolated and quantified total
genomic DNA from whole embryos to estimate cellnumber at 12 stages (1-day
bins, highlighted by black circles), and then predicted cellnumber at 43
timepoints using polynomial regression (Methods). ¢, Two-dimensional
uniform manifold approximation and projection (UMAP) visualization of the
whole dataset. The inset dashed circle shows the same UMAP coloured by
developmental stage (plotting a uniform number of cells per timepoint).
Coloursand numbersinb,ccorrespond to the 26 listed major cell cluster
annotations. Prog., progenitor.

EQ.5, only loosely approximates the time elapsed since conception.
Stochastic differencesin the timing of mating or fertilization, together
with genetic factors and litter size, can result in significant variation
among embryos of identical gestational age'®. Conversely, embryonic
morphogenesisis highly ordered, reproducible, and inherently reflec-
tive of anembryo’s developmental age with respect to absolute position
within amorphogenetic trajectory and the dynamic progression of
underlying cell states®”. Therefore, we staged embryos by well-defined
morphological criteria—for example, somite number and limb bud
geometry—initially to 45 temporal bins at 6-h increments from E8
to PO (Fig. 1a and Extended Data Fig. 1). From a total of 523 embryos
staged at the Jackson Laboratory, we selected 75 for whole-embryo
scRNA-seq, targeting 1 embryo for every somite count from O to 34
(2-hincrements) and one embryo for every 6-h bin from E10 to PO (Sup-
plementary Table 1).
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Whole-embryo scRNA-seq

Flash-frozen embryos were shipped to the University of Washington,
where they were pulverized and subjected to an optimized protocol
forsingle-nucleus transcriptional profiling by combinatorial indexing®
(sci-RNA-seq3). Sequencing datawere generated across 15 sci-RNA-seq3
experiments and 21 lllumina Novaseq runs (Supplementary Tables 1
and?2).Intotal, 160 billionreads were demultiplexed, trimmed, mapped,
deduplicated and grouped on the basis of constituent cellular indices.
Following aggressive filtering of low-quality nuclei and potential dou-
blets, the resulting cell-by-gene count matrix includes transcriptional
profiles for11,441,407 nucleifrom 74 embryos spanning E8 to PO (Fig.1a
and Extended Data Fig. 2a-f), 1% of which (somite counts 0-12) were
previously reported®. On average, 154,614 nuclei were profiled per
embryo (range 1,700 to 1.6 million; Fig.1aand Supplementary Table1).

This dataset greatly improves uponour previous single-cell atlas of
mouse organogenesis' withrespect to sampling depth (from 2 million
to 11.4 million nuclei), profiling depth (median 671 to 2,545 unique
molecular identifiers (UMIs) per nucleus), temporal resolution (24-h
to 2- to 6-hiintervals) and developmental span (E9.5-E13.5 to E8-PO).
In performing quality control, we found that cells from the same or
adjacent stages but profiled in different experiments were well inte-
grated (Extended Data Fig. 2g-i). Furthermore, principal component
analysis (PCA) of pseudobulked RNA-sequencing (RNA-seq) profiles
resulted inamajor first component that strongly correlated with devel-
opmental time (PC1=77%; Extended DataFig. 2j). Ambient noise due to
RNA leakage or barcode swapping was present at low levels (Extended
DataFig. 2k).

Whatkind of ‘shotgun cellular coverage’ of the mouse embryo are we
achieving? Leveraging total DNA quantification of staged embryos, we
estimate that theembryo grows 3,000-fold fromE8.5to PO (210,000 to
670 million cells), withits cellular doubling time slowing from around
6 hto1.5 days (Fig. 1b, Extended Data Fig. 2I,m and Supplementary
Table 3). Thus, even with the many nuclei profiled here, our cellular
coverage remains modest, ranging from 0.5-fold for early stages (sum-
ming 6 embryos, somite counts 7-12) to 0.002-fold immediately before
birth (summing 6 embryos, E17.5-E18.75).

Cell-type annotation

Toget ourbearings, we used Scanpy?’ to generate aglobal embedding
of the 11.4 million cell x 24,552 gene count matrix, and annotated 26
major clusters on the basis of marker genes (Fig. 1b,c and Supplemen-
tary Table 4). Asexpected, cell clusters whose proportions decline over
developmental time either stream towards derivatives (for example,
neuroectodermand gliato central nervous system (CNS) neurons and
intermediate neuronal progenitors) or are displaced by functionally
analogous but developmentally distinct lineages (for example, primi-
tive erythroid to definitive erythroid). However, the resolution of these
major clusters was somewhat arbitrary and affected by abundance. To
balance the resolution, we performed another iteration of clustering
and annotation, resultingin190 labelled cell types (Extended DataFig.3
and Supplementary Table 5). These annotations are preliminary, and
we welcome their refinement by the community.

We also performed deeper divesinto the ontogenesis of the posterior
embryo during somitogenesis, kidney, mesenchyme, retina and early
neurons. These analyses, summarized below, illustrate the richness of
this dataset and highlight opportunities for its further exploration.

Posterior embryo during somitogenesis

Neuromesodermal progenitors (NMPs) are a population of bipotent
cells with both neural (spinal cord) and mesodermal (trunk and tail
somites) derivatives?. Towards extending our previous investiga-
tions of NMP heterogeneity®, we re-embedded 121,118 cells from all
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somitogenesis. a, Re-embedded 3D UMAP of 121,118 cells from selected
posterior embryonic cell types at early somitogenesis (somite counts 0-34;
E8-E10). Three clustersare identified. b, Thesame UMAP asin a, coloured by
somite counts. ¢, Re-embedded 2D UMAP of cells from cluster 1.d, The same
UMAPasinc, coloured by marker gene expression for NMP subpopulations
(Supplementary Table 12). Exp, expression. e, 3D visualization of the top three
principal components of gene expression variationin cluster1. Correlations
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selected genes (left) or somite counts (bottom). f, The same UMAP asinc, with
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somite-staged embryos (0-34 somites) initially annotated as NMPs and
spinal cord progenitors, mesodermal progenitors (Thx6"), notochord
or gut (Fig. 2a-c).

First focusing on NMPs and their immediate derivatives (cluster 1
inFig. 2a), we performed PCA on highly variable genes. The top three
principal components, which explain nearly half of transcriptional vari-
ation, appear to correspond to neural versus mesodermal fate (PC1),
developmental stage (PC2) and bipotentiality versus differentiation
towards either fate (PC3) (Fig. 2d,e and Supplementary Table 6). Assum-
ing that PC3 tracks differentiation consistently between neural versus
mesodermal fates, our data suggest that being brachyury-positive
(T") and MeisI" may better indicate bipotency than being 7" and Sox2",
consistent with recent studies of NMPs’ genetic dependencies®**
(Fig. 2e,f). Cyp26al (whose gene product inactivates retinoids) and
Wnt3a (involved in canonical Wnt signalling) were also strongly cor-
related with bipotency.

We observe marked contrasts between earlier (0-12 somites) and
later (14-34 somites) NMPs, which may correspond to the ‘trunk-to-tail’
transition® (Fig. 2c-f). This observationis consistent with differences
between NMPs from microdissected E8.5 versus E9.5 embryos?,
implicating many of the same genes (for example, CdxI (early) and
HoxalO (late); Fig. 2d and Supplementary Table 7). However, given
concern about batch effects, we profiled an additional 12 embryos (8-21

Pearson corr. with PC1 of notochord

-10 0 10 20

PC1 of gut (19.6%) PC2 of Gut (11.6%)

log(fold change) of the average
expression between early vs late NMPs

for notochord or ciliated nodal cells (FoxjI%). i, Re-embedded 2D UMAP of cells
from cluster 3. Black circles highlight gut cell subpopulations.j, The same
UMAPasini, coloured by marker gene expression for gut cell subpopulations
(Supplementary Table12). k, Left, Pearson correlation (corr.) with PC1 of
notochord or gut for highly variable genes. Right, gene expression of selected
Wntsignalling genes versus PC1 of notochord or gut. 1, Left, fold changes
between early and late NMPs and Pearson correlation with PC2 of gut are
plotted for highly variable genes. Right, gene expression of selected genes
(several MYCtargets, Lin28a and Hsp90aal) versus early and late NMPs or PC2
ofgut.Inc,g,i, cellsare coloured by either initial annotations or somite counts.
Box plotsine (n=98,545cells) and I (n = 8,859 cells) represent inter-quartile
range (IQR) (25th, 50th and 75th percentile) and whiskers represent 1.5x IQR.

somites). This new experiment validated and refined the estimated
timing of this transition (Extended Data Fig. 4a—f).

Another cell type marked by the master transcriptional regulator Tis
thenotochord (cluster 2in Fig. 2a). In0-12 somite embryos, we observe
distinct notochordal subsets, one expressing Noto (notochord home-
obox) and another Shh (sonic hedgehog) (Fig. 2g,h). As somitogenesis
progresses, theinferred derivatives of these subsets remain distinguish-
able. The Noto" subset is marked by posterior Hox genes, Notch and
Whnt signalling, and mesodermal differentiation modules (Extended
Data Fig. 4g). Within this subset, we identify a few cells that strongly
express Foxjl and motile ciliogenesis genes. These ciliated nodal cells,
which set the left-right axis?, are both extremely rare and transient,
peaking at the 2-somite stage (Fig. 2g,h and Extended Data Fig. 4h).

By contrast, the inferred derivatives of the Shh* subset express genes
involved in neurogenesis and synaptogenesis—for example, Sox10,
Bmp3, Nrgl and Erbb4 (Extended Data Fig. 4i). We speculate that the
Noto' subset corresponds to posterior notochord, arising from the
node, whereas the Shh* subset corresponds to anterior mesendoderm
(thatis, anterior head process and possibly prechordal plate), arising
by condensation of dispersed mesenchyme and possibly contributing
to forebrain patterning?®'. These presumably anterior-posterior dif-
ferences are amajor source of notochordal heterogeneity (PC1 =29%;
Supplementary Table 8).
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mesoderm, witharrows highlighting derivative trajectories expressing Gdnf
and Ret, respectively. ¢, Manually inferred relationships between annotated
renal celltypes. Labelannotationsina.d, Re-embedded 2D UMAP of 745,494
cells fromlateral plate and intermediate mesoderm derivatives. Theinset

Turningtogut (cluster 3in Fig.2a), we again observe distinct progeni-
tor subsets that transition to a continuum as somitogenesis progresses
(Fig. 2i). Amajor aspect of this continuum also reflects anterior-pos-
terior patterning, with subsets correspondingto lung, liver, pancreas,
foregut, midgut and hindgut progenitors (PC1=20%; Fig. 2j and Sup-
plementary Table9). As T'is classically associated with notochord and
posterior mesoderm, we were initially surprised by strong Texpression
inthe putative posterior hindgut, coincident with posterior Hox genes
(Extended DataFig. 4j). However, this pattern has been documented®,
and is consistent with the ancestral role of Tin closing the blastopore™
aswellashindgut defectsin Drosophila brachyenteron and Caenorhab-
ditis elegans mab-9 mutants®*,

Of note, there is strong overlap between genes underlying the
inferred anterior-posterior axis of axial mesoderm (notochord; PC1;
n=591)and endoderm (gut; PC1; n=502) (198 overlapping genes, 86%
directionally concordant; P <1072, x*test; Fig. 2k and Supplemen-
tary Table 10). Concordantly posterior-associated genes are highly
enriched for Wnt signalling and posterior Hox genes. One model to
explainthese overlapsbetween germlayersisthat theyare residual to
the commonorigin of anterior mesendodermal derivatives from early
and mid-gastrula organizers (anterior head process, prechordal plate
and anterior endoderm) versus posterior mesendodermal derivatives
from the node (notochord and posterior endoderm). Alternatively,
they could be explained by physically coincident progenitors of these
germ layers being exposed to similar patterns of Wnt signalling.

A second overlap between germ layers involves genes correlated
with early versus late somite countsin NMPs (n = 257) versus gut (PC2;
n=>502) (82 overlapping genes, 70 (85%) directionally concordant;
P <1075, y*test) (Fig. 2l and Supplementary Table 11). Given concern
about batch effects, we re-examined the aforementioned replication
series (8-21 somite embryos). Seventy-seven per cent of the overlap-
ping, concordant genesreplicated in terms of directionality-of-change
between early versus late NMPs and gut (54 out of 70; expected value
25%; Extended Data Fig. 4a-f). Genes reproducibly associated with
early stagesinboth germlayers were strongly enriched for MYC targets,
andincluded Lin28a, a deeply conserved regulator of developmental
timing>®. Other genes, suchas NpmI and Hsp90 isoforms are plausibly
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dashed circle highlights the same UMAP with cells coloured by developmental
stage. SMC, smooth muscle cell. e, The spatial origin of each lateral plate and
intermediate mesoderm derivative was inferred based on a public dataset,
Mosta*®, together with our data and the Tangram algorithm* (Methods). An
image of one selected section (E1S1) from E14.5 of the Mosta dataisshown at the
top left withmajor regionslabelled. The spatial mapping probabilities across
voxels on this section for selected subtypes are shown (non-bold label), with
theregional annotation appearingto best correspond to theinferred spatial
patternshown alongside (labelled inbold). GI, gastrointestinal.

associated with batch effects. However, analysis of amodule of genes
correlated with Npm1 revealed that thismodule declined with develop-
mental time across the entire time series, rather than being correlated
with batch variables (Extended Data Fig. 4k,1).

Intermediate and lateral plate mesoderm

Above, weinvestigated aspects of axial and paraxial mesoderm, which
giverise tonotochord and somites, respectively. Next, we focusonthe
transition fromintermediate mesodermto nephrons, and lateral plate
mesoderm (LPM) to organ-specific mesenchyme.

Our aim was to explore the continuum of transcriptional states
that span the transition from intermediate mesoderm to functional
nephrons. Re-embedding 95,226 relevant cells, we observe two
major trajectories, one corresponding to posterior intermediate
mesoderm-renal tubules, and another corresponding to anterior
intermediate mesoderm-~collecting ducts (Fig. 3a-c). Inlate gastrula-
tion, posterior (Gdnf") and anterior (Ret") intermediate mesoderm®8
initially progress to metanephric mesenchyme and uretericbud states,
respectively, then onwards to functional components of the nephron
(Extended DataFig. 5a-c). Cellsannotated as podocytes and proximal
tubule cells but unexpectedly appearing as early as E10.5 may cor-
respond to mesonephric tubules®. Metanephric mesenchyme and
ureteric bud states persist through PO, presumably reflecting ongo-
ing nephrogenesis, which continues for a few days after birth®. The
apparent bifurcation of proximal tubule cell states at later stages cor-
responds to major differencesin cells obtained before versus after birth
(Extended Data Fig. 5d). We return to this observation further below.

Bothtip andstalk cells areidentified within the uretericbud—the tip
cells giving rise to the collecting duct, and the stalk cells giving to the
ureter*** (Extended DataFig. 5e). Notably, we observe transcriptional
‘convergence’ of the posterior and anterior trajectories in collecting
ductintercalated cells (cluster 4 in Fig. 3a,b). More detailed investiga-
tion supportsacontribution of the posterior trajectory to the collecting
duct, consistent withrecent lineage tracing experiments demonstrat-
ing a dual origin for intercalated cell types from distal nephron and
ureteric lineages*? (Fig. 3c and Extended Data Fig. 5f-h).



The LPM s considerably more complex than the axial, paraxial and
intermediate mesoderms*. Although some LPM derivatives have been
intensely studied (for example, limb and heart), others remain poorly
understood, in particular the mesodermlining the body wall and inter-
nal organs. Thisaspect of LPM givesrise to aremarkable diversity of cell
typesand structures (including fibroblasts, smooth muscle, mesothe-
lium, pericardium, adrenal cortex and others) and its reciprocal inter-
actions with other germ layers has a key role in organ patterning***.

Toannotate understudied LPM derivatives, we leveraged spatial tran-
scriptomic data toimpute coordinates for our cells***’, which enabled
us to annotate 22 subtypes of the LPM and intermediate mesoderm
major cluster, including cardiac (proepicardium), brain (meninges),
lung, liver, foregut and gut mesenchyme, and airway versus gastro-
intestinal versus vascular smooth muscle (Fig. 3d,e, Extended Data
Fig. 6 and Supplementary Table 12). Two subtypes spatially mapped
tothekidney, one tothe cortex and the other heterogeneously, which
we termrenal cortical stromal cells and renal medullary stromal cells,
respectively*® (Fig. 3d,e and Extended Data Fig. 7a—c). Although both
express FoxdI', focused analyses suggest distinct origins, with renal
cortical stromal cells appearing to derive from the intermediate meso-
derm and metanephric mesenchyme, and renal medullary stromal cells
appearing to derive from LPM (Extended Data Fig. 7d,e). However,
lineage tracing experiments would be necessary to provide conclu-
sive evidence for this. Of note, renal medullary stromal cells exhibited
heterogeneity along what may be a cortical-medullary spatial axis
(Extended Data Fig. 7f).

The temporal resolution of our studies enables us to narrow the
window during which various organ-specific mesenchymes are
specified (Extended Data Fig. 8a). We also applied a mutual nearest
neighbours (MNN) heuristic to identify putative precursors of each
subtype (Extended Data Fig. 8b-g)—for example, subsets of splanchnic
mesoderm most highly related to foregut mesenchyme, hepatic mes-
enchyme or proepicardium—which may correspond to the ‘territories’
in which these organ-specific mesenchymes are induced (Extended
Data Fig. 8b-d). For example, hepatic and foregut mesenchyme are
distinguished both from one another as well as from their inferred
progenitors by Gata4 and BarxI expression, respectively*>*°. However,
their inferred progenitors are also distinct from one another, with
inferred hepatic mesenchymal progenitors expressing a programme
of epithelial-mesenchymal transition and inferred foregut mesen-
chymal progenitors expressing multiple guidance cue programmes
(for example, semaphorins, ephrins, SLIT family proteins and netrins)
(Extended Data Fig. 8c and Supplementary Table 13).

From patterned neuroectodermto neurons

We now turn from mesodermto neuroectoderm. Relative to our previ-
ousstudies™, optimizations of sci-RNA-seq3 have markedly improved
our ability to distinguish neuronal subtypes. For example, in Supple-
mentary Note 1, we describe the timing and trajectories of prenatal
diversification of the retina. Inthat context, we can distinguish 15 retinal
ganglion subtypes by PO, on par with expectation®, each well defined
by specific transcription factor combinations (Extended Data Fig. 9a-1
and Supplementary Table 14).

Inour earliest embryos (0-12 somites), we previously defined a con-
tinuum of cell states that correlated with anatomical patterning of the
‘pre-neurogenesis’ neuroectoderm?. Extending this analysis through
early organogenesis (E8-E13), we observe clusters corresponding to
territories that will give rise to the major regions of the mammalian
brain (Fig. 4a and Extended Data Fig. 9m). As development unfolds
further, we observe many trajectories of neurogenesis arising from
these inferred territories (Fig. 4b,c).

Beginning as early as the 16-somite stage, most neuronal diversity
derives from direct neurogenesis (Fig. 4d), including motor neurons,
cerebellar Purkinje cells, Cajal-Retzius cellsand many other subtypes
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Fig.4|Theemergence of neuronal subtypes fromthe patterned
neuroectoderm. a,Re-embedded 2D UMAP 0f1,185,052 cells, corresponding
todifferent neuroectodermal territories from neuroectodermand glia; major
cell clusters, from stages before E13. b, Re-embedded 3D UMAP of 1,772,567
cellsfrom neuroectodermal territories together with derived cell types, from
stages before E13. Patterned neuroectoderm comprises neuroectoderm and
gliaand choroid plexus; direct neurogenesis comprises CNS neurons; indirect
neurogenesis comprisesintermediate neuronal progenitors.c, The same
UMAP asinb, coloured by timepoint.d, Composition of embryos from each 6-h
binbyintermediate neuronal progenitor (left) and CNS neuron (right) major
cellclusters. e, Re-embedded 2D UMAP 0f 296,020 cells (glutamatergic
neurons, GABAergic neurons, and spinal cord dorsal and ventral progenitors)
fromstagesbefore E13.f, The top 3 transcription factor markers of the 11 spinal
interneurons. Marker transcription factors were identified using the
FindAllMarkers function of Seurat v3®%. The heat map shows mean gene
expression values per cluster, calculated from normalized UMI counts. g, The
row-scaled number of MNN pairs identified for each derivative cell type
betweenitsearliest 500 cells and cells from neuroectodermal territories.
Somederivative cell types are excluded owing to low cellnumber or MNN pairs.
h, Thesame UMAP asina, but withinferred progenitor cells coloured by
derivative cell type with the most frequent MNN pairs. Dotted circles highlight
the dorsal and ventral spinal interneuron neurogenesis domains of the
hindbrain and spinal cord. Di/mes, diencephalon and mesencephalon.

(CNS neurons sub-panel of Extended Data Fig. 3). Indirect neurogen-
esis® has a later start, with intermediate neuronal progenitors first
detected at E10.25, later giving rise to deep-layer neurons, upper-layer
neurons, subplate neurons, and cortical interneurons (Fig. 4d and
Extended Data Fig. 10a,b). Although many subtypes deriving from
direct neurogenesis are easily distinguished, the majority (55%) of
these 2.1 million cells could initially only be coarsely annotated as glu-
tamatergic or GABAergic (y-aminobutyric acid-producing) neurons
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or dorsal or ventral spinal cord progenitors. To leverage the greater
heterogeneity evident at early stages as these trajectories ‘launch’
fromthe patterned neuroectoderm, we re-analysed the pre-E13 subset.
This facilitated much more granular annotation, while also highlight-
ing sources of heterogeneity—for example, anterior versus posterior
or inhibitory versus excitatory (Fig. 4e, Extended Data Fig.10c,d and
Supplementary Table 12).

Among these more refined annotations of direct neurogenesis
derivatives were 11 spinal interneuron subtypes; similar to retinal
ganglion subtypes, these were well defined by transcription factor
combinations® (Fig. 4f and Supplementary Table 15). The top prin-
cipal components of transcriptional heterogeneity among spinal
interneurons appear to correspond to neuronal differentiation (PC1
and PC2), glutamatergic versus GABAergic identity (PC3), and dorsal
versus ventral identity (PC4) (PC1-4 (50%); Extended Data Fig. 10e,f
and Supplementary Table 16).

We next sought to infer the progenitors from which various neu-
ronal and non-neuronal cell types derive. First, we took pre-E13 cells
annotated as astrocytes, choroid plexus or any direct or indirect neuro-
genesis derivative, and co-embedded them with cells of the patterned
neuroectoderm. Next, for each derivative celltypeinthe co-embedding,
weselected the 500 ‘youngest’ cells, identified their patterned neuroe-
ctoderm MNNs and then mapped these back to our original embedding
of patterned neuroectoderm (Fig. 4g,h). The resulting distribution of
inferred progenitors is considerably more granular than our annota-
tions of anatomical territories (compare Fig. 4h with Fig. 4a).

For non-neuronal subtypes, the inferred progenitors of the choroid
plexus overwhelmingly map to the anterior roof plate (91%), with a
minor subsetin the dorsal diencephalon (5%), although this balanceis
likely impacted by the time window of this analysis* (E8-E13). Inferred
astrocyte progenitors exhibit a more complex distribution, with VA2
progenitors primarily assigned to the spinal cord, r7 and r8 (83%) and
hindbrain (16%), and VA3 progenitors to the spinal cord, r7 and r8 (57%)
and floorplate and p3 domain® (32%) (Extended Data Fig. 10g-j). VA1
astrocytesarise later than VA2 and VA3 astrocytes, and were not present
in sufficient numbers for their progenitors to be inferred.

For neuronal subtypes, inferred progenitors largely fall within the
expected territories, but with considerable granularity (Fig. 4h). For
example, inferred progenitors of dorsal and ventral spinal interneurons
cluster distinctly. Although the progenitors of three neuronal subtypes
(cerebellar Purkinje neurons, precerebellar neurons and spinal dl6
interneurons) were not clearly defined by the method described above,
aniterative variant of the MNN heuristic suggested that cerebellar
Purkinje neurons and dI2 spinalinterneurons have common or atleast
transcriptionally similar progenitors, which may have confounded the
original analysis (Extended Data Fig. 10k).

We next examined how the identities of neuronal subtypes are estab-
lished and maintained*. We identified transcription factors specific
to each of the 11 spinalinterneuron subtypes (median 53 per subtype;
Fig. 4f and Supplementary Table 15). However, within each subtype,
these transcription factors exhibit complex temporal dynamics, with
most only expressed transiently (Extended Data Fig.10l). Focusing on
spinal interneurons dl1-dl5, we could also identify transcription fac-
tors specificto theinferred progenitors of each subtype, relative to the
inferred progenitors of other dorsal spinal interneurons (Extended Data
Fig.10m, left). Most of these were basic helix-loop-helix or homeo-
domain transcription factors®. However, consistent with the transi-
tional expression of other subtype-specific transcription factors, their
expression was generally not maintained for very long after neuronal
specification (Extended Data Fig.10m, right).

Finally, we sought to systematically delineate the timing of differen-
tiation (Extended Data Fig.10n). This analysis suggests that the emer-
gence of each derivative cell type from the patterned neuroectoderm
is both cell-type-specific and modestly asynchronous. For example,
about 95% of inferred progenitors of dI2 spinal interneurons are from
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20-somite to E11 stage embryos, whereas 95% of d14 spinal interneu-
ronsinferred progenitors are from 27-somite to E11.75 stage embryos.

Together, these analyses are consistent with amodel articulated by
Sagner and Briscoe*® in which both spatial and temporal factors heavily
contribute to the specification of neuronal subtypes as they emerge
from the patterned neuroectoderm. Furthermore, they highlight the
complexity of this process not only at the initiation of each neuronal
subtype, but also over the course of their early maturation—for exam-
ple, at 6-hresolution, we can observe each spinalinterneuron subtype
expressing adynamic succession of developmentally potent transcrip-
tion factors (Extended Data Fig. 101).

Acell-type tree fromzygote to birth

A primary objective of developmental biology is to delineate the line-
age relationships among cell types. Transcriptional profiles of single
cells donot explicitly contain lineage information. However, assuming
thata continuity of transcriptional states spans all cell-type transitions,
we can envision a tree accurately relating cell types based solely on
scRNA-seq data®. Indeed, we and others have constructed such trees
for portions of worm, fly, fish, frog and mouse development”® 7,

Onthe basis of these learnings, we constructed arooted tree of cell
types that spans mouse development from zygote to birth, based on
four published datasets*” (110,000 cells; EO-E8.5) and the dataset
reported here (11.4 million cells; E8-PO) (Supplementary Table 17).
Challengesincluded the heterogeneity of technologies used to generate
the data, that cells’ transcriptional states are only loosely synchronized
with developmental time, the multiple scenarios by which cell state
manifolds may be misleading®, and finally, the sheer complexity of this
organism. To overcome these challenges, we took a heuristic approach.

First, we split cells into 14 subsystems to be separately analysed
and subsequently integrated (pre-gastrulation, gastrulation, and 12
organogenesis and fetal subsystems; Supplementary Tables17 and 18).

Second, dimensionality reduction was performed on each subsystem
and 283 cell-type nodes were defined, largely but not entirely corre-
spondingto our original cell-type annotations (Supplementary Table 19
and 20). The cells comprising each node derived from a single data
source, but usually from multiple timepoints within that datasource.

Third, we sought to draw edges between nodes (Fig. 5a-f). Within
each subsystem, we identified pairs of cells that were MNNs in
30-dimensional PCA space. Although the overwhelming majority of
MNNs occurred within nodes, some MNNs spanned nodes, presumably
enriched for bonafide cell-type transitions. Each possible edge (that s,
node pair) was ranked based on anormalized count of inter-node MNNs
(Supplementary Table 21). The MNN approach is robust to technical
factors or parameter choices (Extended Data Fig. 11a-c and Supple-
mentary Note 2).

Fourth, we manually curated the top 1,155 candidate edges for bio-
logical plausibility (Extended Data Fig. 11d), leaving 452 edges, which
we further categorized as likely reflecting ‘developmental progression’
or ‘spatial continuity’ (Supplementary Table 22). Notably, where nodes
were connected to multiple other nodes, distinct subsets of cells were
generally involved in each edge, and inter-node MNN pairs exhibited
temporal coincidence (Fig. 5a-f). As only ahandful of cells were profiled
inthe pre-gastrulation subsystem, its edges were added manually.

Finally, to bridge subsystems, we performed batch correction and
co-embedding of selected timepoints from different data sources,
resulting ina third category of ‘dataset equivalence’ edges (Extended
DataFig.1le-h). Ten of the organogenesis and fetal development sub-
systems could be linked to equivalent cell-type nodes in the gastrula-
tionsubsystemin adata-driven manner, and two required edges to be
manually added based on biological plausibility. Altogether, we added
55inter-subsystem edges.

The resulting developmental cell-type tree, spanning EO to PO, can
berepresented as arooted, directed graph (Fig. 5g).
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Fig.5|Adata-driventreerelating cell types throughout mouse development,
fromzygote to pup. a, Illustration of the basis for the edge inference heuristic.
Re-embedded 2D UMAP 0f 101,001 cells from Cd34* HSCs, Mpo* HSCs, monocytic
myeloid-derived suppressor cells (MDSCs) and PMN MDSCs within the ‘blood’
subsystem. Cellsinvolved in MNN pairs that bridge cell types are coloured.

b, Inferred lineage relationships between annotated cell typesina, with
corresponding colour scheme. ¢, The percentage of inter-cell-type MNN cells
(yaxis) versus the total number of cells profiled from embryos from the
correspondingtimebin, with colour schemeasina,b. d, Additionalillustration
ofthebasis for the edge inference heuristic. Re-embedded 2D UMAP 0f 71,718
cells fromgut, lung progenitor cells and alveolar type 2 cells within the ‘gut’
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Key drivers of cell-type transitions

We next sought to test which transcription factors or other genes
sharply change in expression with the emergence of each cell type.
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subsystem. Cellsinvolved in MNN pairs that bridge cell types are coloured.

e, Inferred lineage relationships between annotated cell typesind, with
corresponding colour scheme. f, The percentage of inter-cell-type MNN cells
(yaxis) versus the total number of cells profiled from embryos from the
corresponding timebin, with colourschemeasind,e.g, Arooted, directedgraph
corresponding to development of amouse, spanning EO to PO (Methods). For
presentation purposes, weremoved most ‘spatial continuity’ edges and merged
nodes withredundantlabels derived from different datasets, resultingina
rooted graph comprising 262 cell-type nodes and 338 edges. Nodes are coloured
and labelled by each of the 14 subsystems. CLE, caudal lateral epiblast; EXE,
extra-embryonic; NK-T cell, natural killer T cell; PV, parvalbumin.

First, foreach directional cell-type transition edge between two nodes
in the graph (A~>B), we identified both ‘inter-node’ MNNs, as well as

‘intra-node’ MNNs of the inter-node MNNs. Rather than considering
the entirety of A versus B, this heuristic focuses our attention on the
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cells most proximate to each cell-type transition (groups 1-2->3->4in
Extended Data Fig. 11i,j). Next, we identified differentially expressed
transcription factors (DETFs) and differentially expressed genes
(DEGs) across each phase of the modelled transition—that is, early
(1>2),inter-node (2->3) and late (3->4). Notably, the early phase is within
node A, which may facilitate identification of changes that precede the
A-Btransitionitself.

We applied this heuristic to 436 edges of the rooted tree shown in
Fig. 5g, nominating ranked lists of median 28 (IQR 12-51) DETFs and
171 (IQR 76-389) DEGs per edge (Supplementary Tables 23 and 24).
Most genes were nominated for only one or a few edges, with outliers
that may have more generalrolesin cell-type specification (Extended
Data Fig. 11k,1). Many of the top-ranked upregulated DETFs for the
early phase of a transition correspond to an established driver of the
derivative cell type (for example, Mitffor melanocytes, EbfI and Pax5
for B cell progenitors, LefI for B cells and Zfpm1I for megakaryocyte-
erythroid progenitors). We also nominated potentially novel drivers
that warrant further investigation (including Tcf7(2 for Kupffer cells,
Ltffor monocytic myeloid-derived suppressor cells, Esrrg for dor-
sal telencephalon-derived choroid plexus, Zfp536 for myelinating
Schwann cells and Rreb1I for adipocyte progenitors) (Supplementary
Table 23).

Digging into awell-studied transition, Sox17is the sole upregulated
DETF during the early phase of the anterior primitive streak->definitive
endodermtransition, whereas other transcription factors (Elf3, Sall4,
Hesx1,Lin28a, Hmgal and Ovol2, but not Sox17) are upregulated during
the transitionitself (Supplementary Table 23). Non-transcription factor
DEGs specifictothe early phase of this transitioninclude Cerl, ADP/ATP
translocase1(Slc25a4) and Slc2a3 (also known as Glut3) (Supplementary
Table 24). To examine this further, we subjected all cells participating
in groups 1-4 of this transition to conventional pseudotime analysis™.
This analysis supported the upregulation of Sox17 as preceding other
nominated transcription factors, and further highlighted Cer1 as the
only non-transcription factor DEG with SoxI7-like kinetics (Extended
Data Fig.11m,n).

A more complex example involves Cd34" haemopoietic stem cells
(HSCs), whichinthegraphare the origin ofadozencell types (Extended
DataFig.110). Notably, although Cd34* HSCs constitute asingle node,
the cells composing this node are very heterogeneous, with distinct
subsets participating in the MNN pairs that support edges to various
lymphoid, myeloid and erythroid derivatives (Extended Data Fig.11p,q).
Correspondingly, the heuristic nominates different transcription fac-
torsasearly regulators of each transition—for example, EbfI for B cells
and /d2 and Nfatc2 for conventional dendritic cells (Extended Data
Fig.11r).

Marked changes immediately after birth

As touched on above, we anecdotally noticed that proximal tubule
cellsderiving from PO pups were unusually well-separated from those
deriving from late-stage fetuses (Extended DataFig. 5d). A similar phe-
nomenon was noted for hepatocytes, adipocytes, and various lungs
and airway cell types (Fig. 6a). This contrasts sharply with the bulk of
thetime-lapse, in which cells of agiven type were overwhelmingly well
mixed across adjacent timepoints. Concerned this was due to batch
effects or the pitfalls of over-interpreting UMAPs*’, we conducted a
timepoint correlation analysis, testing for each cell type whether the
k-nearest neighbours of cells of agiventimepoint were derived from the
same or different timepoints. In this framing, alow proportion of neigh-
bours from different timepoints suggests atemporally abrupt changein
transcriptional state. For nearly all cell types, PO cells exhibited alower
proportion for this metric than all other timepoints (Fig. 6b). Although
atrivial explanation would be alonger interval between E18.75and PO
than 6 h, the pattern was highly non-uniform across cell types, with
extreme examples including the aforementioned cell types as well as
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various endothelialand blood lineages. In sharp contrast, PO cells from
most neuronal cell types were relatively well mixed with cells deriving
from earlier timepoints.

Tovalidate this phenomenon, we collected nine pups fromasingle lit-
ter. Three were delivered vaginally, and the remaining six by caesarean
section (C-section) and euthanized eitherimmediately (2 pups), or after
20,40, 60 or 80 min (1 pup each) (Fig. 6c and Extended Data Fig. 12a).
Nucleifromthese nine pups were analysed in anew sci-RNA-seq3 experi-
ment, which yielded nearly one million additional single-cell profiles
(Extended Data Fig. 12b and Supplementary Tables1and 2).

We applied timepoint correlation analysis to 24 major cell clusters
identified in the 6 C-section embryos, as above except treating time
after C-section as a continuous variable. Once again, hepatocyte,
adipocyte and lung and airway cells were major outliers, validating
our initial finding and narrowing the window in which these abrupt
changes emerge to the first hour of extrauterine life (Fig. 6d,e and
Extended Data Fig.12c¢,d). Although we cannot fully rule out techni-
cal artefacts, we took care to minimize handling and stress prior to
euthanasia and immediate snap freezing. Furthermore, it is plausible
that rapid changes in transcriptional programmes might be physi-
ologically necessary owing to the profound differences between the
placental and extrauterine environments. In examining DEGs of rapidly
changing cell types, either in E18.75 versus PO embryos or across the
C-section time series, we see clues that support this interpretation
(Supplementary Tables 25 and 26).

Forexample, in hepatocytes, genesinvolved ingluconeogenesis are
sharply upregulated, including Ppargcla, which encodes PGC-1a, a
master regulator of hepatic gluconeogenesis, as well as Pck1, G6Pc and
Gotl, which encode key enzymes in this pathway (Fig. 6f). Aspects of
these changes have previously been linked to changes in key nutritional
hormones immediately after birth and are presumably necessary for
maintaining normoglycaemiainthe wake of being abruptly cut offfrom
maternal nutrients®. Inbrown adipocytes, we observe sharp upregu-
lation of Irf4, a cold-induced master regulator of thermogenesis, and
again of Ppargcla, which in adipocytes has a different role thanin the
liver,as PGC-1a partners with IRF4 to drive the expression of Ucpl and
uncoupled respiration®, presumably to maintain body temperature
upon transition to the extrauterine environment® (Fig. 6f).

The time elapsed between vaginal births and the collection of pups
was not precisely captured in the replication experiment. However, on
co-embedding cells derived from vaginally birthed pups with those
delivered by C-section for the three most relevant major cell clusters,
timepoint correlation analysis suggested they were collected within
1hof birth (Extended Data Fig. 12e). However, this assumes similar
kinetics for these rapid transcriptional changes in C-section versus
vaginally delivered pups. On more detailed inspection, the patterns
are considerably more complex, with certain clusters appearing to
be specific to vaginally birthed pups (Extended Data Fig. 12f and Sup-
plementary Table 27).

Discussion

We profiled the transcriptional states of 12.4 million nuclei from 83 pre-
cisely staged embryos spanning late gastrulation (E8) to birth (PO), with
2-htemporal resolution during somitogenesis, 6-hresolution tobirth,
and20-minresolutionimmediately postpartum. Despite the scale of the
study, the project was driven by asmallnumber of individuals, and not
aformal productionteam. Allembryo staging was performed by .C.W.,
nearly all data production was done by B.K.M. and all computational
analyses were done by C.Q. Nearly all experiments and analyses were
completed within one year. Direct costs of reagents and labour were
around US$70,000, and sequencing cost around US$300,000. This
single dataset is equivalent to about 30% of the aggregated corpus of
the Human Cell Atlas Data Portal (https://data.humancellatlas.org/)
as of March 2023.
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Fig. 6 |Rapid shiftsintranscriptional state occurinarestricted subset of
celltypesuponbirth.a,Re-embedded 2D UMAP of cells from hepatocytes,
adipocytes, and lung and airway, with colours highlighting cells from pre-E18.75
stages (left), E18.75 (middle) or PO (right) embryos. b, We identified cell types
with abrupttranscriptional changes before versus after birth by combining
cells from animals collected after E16, performing PCA and calculating the
average proportion of nearest neighbour cells from a different timepoint for
each celltype (Methods). A low proportion of neighbours from different
timepoints corresponds to arelatively abrupt changein transcriptional state.
PO points are highlighted with ablack boundary. Differentially expressed
genes for the 20 most highly ranked cell types are shown in Supplementary
Table 25. ¢, AnewscRNA-seqdataset (birth series) was generated from nuclei of
pupscollected after delivery (three vaginal births, six C-sections with 20-min

Three broad concepts supported our ability to generate, analyse
and integrate such a large dataset with a small team at a modest cost:
First, multiplexing, which fundamentally underlies the exponential
scalability of single-cell combinatorial indexing as well as that of mas-
sively parallel DNA sequencing. Second, open science, as we have taken
abundant advantage of many freely released software packages for
single-cell data analysis'?**¢* Third, our focus on mouse develop-
ment, an eminently reproducible process through which we could
access allmammalian cell types (or their predecessors) within aseries
of physically compact samples.

Our goalinthis study was not to learn a specific piece of biology, but
rather to advance the foundation foracomprehensive understanding
of mammalian development. Although the dataset is a rich source of
hypotheses (for example, to identify candidate transcription factor
drivers of all prenatal cell types), the largest surprise was the discov-
ery of rapid changes in transcriptional state in a restricted subset of
cell types within 1 himmediately following birth. There is immense
evolutionary pressure on the transition from placental to extrauterine
life, which is arguably as fraught a moment as gastrulation in terms
of physiological peril®*. Some genes that are sharply upregulated in
certain cell types can be attributed to specific adaptations. However,
many more genes are dynamic in these and myriad other cell types
shortly after birth. The adaptive functions served, as well as the mecha-
nisms underlying their rapid induction, areripe for further exploration.

increments).d, For each cell clusterin the birth series dataset, we calculated a
Pearson correlation between the timepoint of each cell and the average
timepointsof its ten nearest neighbours. High correlationsindicate rapid,
synchronized changesintranscriptional state. e, Re-embedded 2D UMAP of
cellsfrom hepatocytes, adipocytes, and lung and airway, based on cells from
six pups delivered by C-section, with colours highlighting cells from pups
collected after different intervals after delivery. f, Average normalized gene
expression of selected genes for E18.75 versus PO in the original data (top) and
normalized expression of the same genes as a function of C-section timepoints
(bottom) for hepatocytes, brown adipocyte cellsand alveolar typelcells. Gene
expressionis normalized to total UMIs per cell and plotted as the natural
logarithm. Theline of gene expression was plotted using the geom_smooth
functioninggplot2.

Notably, human babies delivered by C-section versus vaginal routes
have differences in long-term physiology and health outcomes®. It
is plausible that aspects of these postnatal phenotypic differences
have their roots in how the massive, abrupt, cell-type-specific changes
documented here are influenced by the mode of delivery.

We only profiled only one embryo for most timepoints, such that we
cannot systematically assess interindividual variation. However, such
analyses may be better pursued through other datasets—for exam-
ple, the recent profiling of 101 mutant or wild-type E13.5 embryos®
Although both sexes were profiled, generally alternating, we have yet
to delve into sex differences, and this remains one of many avenues
of investigation that we hope researchers in the field will pursue. The
data may also be useful in ways that we did not originally anticipate—
for example, for pre-training large language models of mammalian
biology®’.

We recently proposed the concept of a consensus ontogeny of cell
types, inclusive of lineage histories and molecular states, as a potential
structure for areference cell tree®®. The cell-type tree constructed here,
which spans mouse development from single-cell zygote to free-living
pup, represents a further step in this direction. But just as Sulston
reconstructed both the embryonic and post-embryonic lineages of
C.elegans®®’°, mouse development does not end at PO. Extending this
framework to postnatal timepoints may ultimately yield a single-cell
time-lapse of the entire mammalian lifespan, from conceptionto death.
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Methods

Datareporting

For newly generated mouse embryo data, no statistical methods were
used to predetermine sample size. Embryos used in the experiments
were randomized before sample preparation. Investigators were
blinded to group allocation during sample collection and data genera-
tionand analysis. Embryo collectionand sci-RNA-seq3 datageneration
were performed by different researchers in different locations.

Mouse embryo collection and staging

Allanimal use at TheJackson Laboratory was done in accordance with
the Animal Welfare Act and the AVMA Guidelines on Euthanasia, in com-
pliance with the ILAR Guide for Care and Use of Laboratory Animals,
and with prior approval from The Jackson Laboratory Animal Care and
Use Committee under protocol AUS20028.

The details of collecting the 12 mouse embryos with somite counts
ranging from O to 12 were described previously®. In brief, C57BL/6N]
(strain 005304) mice were obtained at The Jackson Laboratory and
mice were maintained via standard husbandry procedures. Timed
matings were set in the afternoon and plugs were checked the follow-
ing morning. Noon of the day a plug was found was defined as EO.5.
Onthe morning of E8.5, individual decidua were removed and placed
inice cold PBS during the collection. Individual embryos were dis-
sected free of extraembryonic membranes, imaged, and the number
of somites present were noted prior to snap freezing in liquid nitrogen
(Extended Data Fig. 1a). A portion of yolk sac from each embryo was
collected for sex based genotyping and samples were stored at —80 °C
until further processing.

For newly processed mouse embryos, we used a combination of
staging methodologies depending on gestational age of collection
(Extended Data Fig. 1b-f). To maximize temporal coherence, resolu-
tion, and accuracy, we sought to stage individual embryos based on
well-defined morphological criteria, rather than by gestational day
alone.Embryos collected between E8.0-E10.0 were staged based upon
the number of somites counted at the time of collection and further
characterized by morphological features (Extended Data Fig. 1a). For
E10.25-E14.75 embryos, developmental age was determined using
the embryonic mouse ontogenetic staging system (eMOSS, https://
limbstaging.embl.es/), which leverages dynamic changes in hindlimb
bud morphology and landmark-free based morphometry to estimate
the absolute developmental stage of a sample””%. Amodified staging
tool, implemented in Python and exhibiting better performance on
E14.0-E15.0 samples, was used to confirm staging of samples within
this window (documentation and Python scripts available at https://
github.com/marcomusy/welsh_embryo_stager). To distinguish sam-
ples staged via eMOSS, these samples are prefixed with ‘mE’ to indi-
cate morphometric embryonic day (for example, mE13.5; Extended
Data Fig. 1b-f). Due to the increased complexity of limb morphol-
ogy at later stages automated staging beyond E15.0 is not possible.
As a consequence, collections for all remaining embryonic samples
(E15.0-E18.75) was performed precisely at 00:00, 06:00, 12:00 and
18:00 onthetargeted day. From close inspection of limbs in this sample
set we defined additional dynamics related to digit morphogenesis
that allowed further binning of samples collected on days 15 and 16
(Extended DataFig.1b-f). Therefore, amongst samples profiled in this
study, only the E17.0-E18.75 samples were staged solely by gestational
age. Finally, PO samples were collected from litters at noon of the day
of birth (parturition for C57BL/6NJ occurs between E18.75 and E19.0).

Collection of mouse pups immediately after birth

Samples for the validation experiment on periparturition transcrip-
tional dynamics were collected from a plugged female that was moni-
tored for signs of labour beginning at E18.75. Following the natural
delivery of 3 pups the dam was euthanized, and following removal

from the uterus and extraembryonic membranes, the remaining pups
were either collected immediately or placed inawarming chamber to
monitor respiratory response and collected at 20-min intervals. We
collected nine new pups altogether. The first 3 pups were estimated to
be between1hto2 hold, although this was not precisely timed (sam-
ples1-3in Fig. 6¢c and Extended Data Fig. 12a). None of these pups
had nursed at the time of collection. The next two pups were taken by
C-section, decapitated and snap frozenimmediately; no breaths were
taken (samples4and 5in Fig. 6¢c and Extended Data Fig.12a). The next
4 pups were taken by C-section and used for a ‘pink up’ time course,
collecting one pup every 20 min (that is, 20 min, 40 min, 60 min and
80 min; samples 6-9 inFig. 6¢c and Extended Data Fig.12a). During this
time, all pups remained very active and working to establish abreathing
rhythm. Pup 6 had not fully pinked up at time of collection, but pups
7-9had.Pups8and 9 had visible lungsin their chest cavities at 60 min.
Thelast pup collected at 80 min was fully pink with areasonably stable
breathing rhythm. No vocalization was heard from any pups during this
collection. Of note, for additional quality control, we put nuclei from
previously profiled E18.75 and PO embryosinto asmall number of wells
of the sci-RNA-seq3 experiment in which nuclei from this validation
series were processed.

Generating data using an optimized version of sci-RNA-seq3
Together with E8.5 data, which has been reported previously®, a total
of15sci-RNA-seq3 experiments were performed onatotal of 7Smouse
embryos. Atleast one sample was included for every 6-hinterval from
E8.0to PO, and we also included embryos with as many specific somite
counts as we could for the 0-34 somite range. Multiple samples were
selected for a few timepoints (for example, two samples for E13.0) to
boost cellnumbers. Meanwhile, we tried to ensure that both male and
female mice roughly alternated at adjacent timepoints (Extended Data
Fig.2j). Adetailed summary and images of individual embryos can be
found in Extended Data Fig.1and Supplementary Table. 1.

Togenerate the dataset, we used the optimized sci-RNA-seq3 proto-
colPaswritten, adjusting the volume and type of lysis buffer to the size
oftheembryos. In brief, frozen embryos were pulverized ondryice and
cellswerelysed witha phosphate-based, hypotonic lysis buffer contain-
ing magnesium chloride, Igepal, diethyl pyrocarbonate as an RNase
inhibitor, and either sucrose or bovine serum albumin (BSA). Lysate
was passed over a20-pm filter, and the nuclei-containing flow-through
was fixed with a mixture of methanol and dithiobis (succinimidyl pro-
pionate) (DSP). Nuclei were rehydrated and washed in a sucrose/PBS/
Triton X-100/magnesium chloride buffer (SPBSTM), then counted and
distributed into 96-well plates for reverse transcription with indexed
oligonucleotide-dT primers.

Age-specific adaptations were as follows. E10-E13 embryos use
5 ml BSA lysis buffer, E14 embryos use 10 ml BSA lysis buffer, E15-E18
embryos use 20 ml sucrose-based lysis buffer. Each of these samples
were split over 48-96 wells for reverse transcription and the first round
ofindexing. Anewborn PO mouse requires 40 ml of sucrose-based lysis
buffer,and thelysateis divided into 4 fractions for filtration and fixing
because of the amount of tissue involved. The two PO mice were each
processed as an individual experiment and were each split over 384
wells for reverse transcription.

For the mouse samples E8.0-E9.75, we used the ‘Tiny Sci’ adaptation
of the optimized sci-RNA-seq3>. Frozen embryos were gently resus-
pendedin100 pllysis buffer to free the nuclei, then 400 pl of dithiobis
(succinimidyl propionate)-methanol fixative was added. In the same
tube, fixed nuclei were rehydrated, washed and then put directly into
8-32 wells for reverse transcription.

After reverse transcription, nuclei were pooled, washed, and redis-
tributedinto fresh 96-well plates to attach asecond index sequence by
ligation. Then the nuclei were pooled again, washed and redistributed
intothefinal plates. There, the nucleiwould undergo second-strand syn-
thesis, extraction, tagmentation with Tn5 transposase and finally PCR
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toaddthefinalindexes. The PCR products were pooled, size-selected,
andthenthelibrary was sequenced onanllluminaNovaSeq. For some
experiments, asecond NovaSeq run was necessary to capture the extent
of the library complexity, so we would add more sequencing reads
until the PCR duplication rate met a threshold of 50% or the median
UMI count per cell went over 2,500. The validation dataset (Extended
Data Fig. 4a-f) generated from 8-21-somite embryos was sequenced
on an lllumina NextSeq.

Processing of sci-RNA-seq3 sequencing reads

Data from each individual sci-RNA-seq3 experiment was processed
independently. For each experiment, read alignment and gene count
matrix generation was performed using the pipeline that we devel-
oped for sci-RNA-seq3" (https://github.com/JunyueC/sci-RNA-seq3_
pipeline). In brief, base calls were converted to fastq format using
Illumina’s bel2fastq v2.20 and demultiplexed based on PCRi5 and i7
barcodes using maximum likelihood demultiplexing package deML"
with default settings. Demultiplexed reads were filtered based on the
reverse transcription (RT) index and hairpin ligation adapter index
(Levenshteineditdistance (ED) < 2, includinginsertions and deletions)
and adapter-clipped using trim_galore v0.6.5 (https://github.com/
FelixKrueger/TrimGalore) with default settings. Trimmed reads were
mapped to the mouse reference genome (mm10) for mouse embryo
nucleiusing STARv2.6.1d” with default settings and gene annotations
(GENCODE VM12 for mouse). Uniquely mapping reads were extracted,
and duplicates were removed using the UMIsequence, RT index, liga-
tion index and read 2 end-coordinate (that is, reads with identical
UMI, RT index, ligation index and tagmentation site were considered
duplicates). Finally, mapped reads were splitinto constituent cellular
indices by further demultiplexing reads using the RT index and liga-
tionindex. To generate digital expression matrices, we calculated the
number of strand-specific UMIs for each cell mapping to the exonic and
intronicregions of each gene with the Pythonv2.7.13 HTseq package”.
For multi-mapping reads (that is, those mapping to multiple genes),
the read were assigned to the gene for which the distance between
the mapped location and the 3’ end of that gene was smallest, except
in cases where the read mapped to within100 bp of the 3’ end of more
thanonegene, inwhich case the read was discarded. For most analyses,
weincluded both expected-strandintronic and exonic UMIsin per-gene
single-cell expression matrices. After the single-cell gene count matrix
was generated, cells with low quality (UMI <200 or detected genes <100
or unmatched_rate (proportion of reads not mapping to any exon or
intron) > 0.4) were filtered out. Each cell was assigned to its originat-
ing mouse embryo on the basis of the reverse transcription barcode.

Doublet removal

We performed three steps with the goal of exhaustively detecting
and removing potential doublets. Of note, all these analyses were
performed separately on data from each experiment.

First, we used Scrublet to detect doublets directly. In this step, we
first randomly split the dataset into multiple subsets (six for most of
the experiments) in order to reduce the time and memory require-
ments. We then applied the Scrublet v0.1 pipeline’ to each subset with
parameters (min_count=3, min_cells=3, vscore_percentile=85,n_pc=
30, expected_doublet_rate=0.06, sim_doublet_ratio =2, n_neighbors
=30, scaling_method =‘log’) for doublet score calculation. Cells with
doublet scores over 0.2 were annotated as detected doublets.

Second, we performed two rounds of clustering and used the dou-
bletannotations toidentify subclusters that are enriched in doublets.
The clustering was performed based on Scanpy v.1.6.0%. In brief, gene
counts mapping to sex chromosomes were removed, and genes with
zero counts were filtered out. Each cell was normalized by the total
UMl count per cell, and the top 3,000 genes with the highest variance
were selected, followed by renormalizing the gene expression matrix.
The datawas log-transformed after adding a pseudocount, and scaled

to unit variance and zero mean. The dimensionality of the data was
reduced by PCA (30 components), followed by Louvain clustering
with default parameters (resolution =1). For the Louvain clustering,
we first computed a neighbourhood graph using a local neighbour-
hood number of 50 using scanpy.pp.neighbors. We then clustered
the cells into sub-groups using the Louvain algorithm implemented
by the scanpy.tl.louvain function. For each cell cluster, we applied the
same strategies toidentify subclusters, except that we set resolution =
3for Louvain clustering. Subclusters with adetected doublet ratio (by
Scrublet) over 15% were annotated as doublet-derived subclusters. We
then removed cells which are either labelled as doublets by Scrublet
orthatwereincludedindoublet-derived subclusters. Altogether, 2.7%
t016.8% of cells in each experiment were removed by this procedure.

We found that the above Scrublet and iterative clustering-based
approach has difficulty identifying doublets in clusters derived from
rare cell types (for example, clusters comprising less than 1% of the total
cellpopulation), sowe applied athird step to further detect and remove
doublets. This step uses a different strategy to cluster and subcluster
the data, and thenlooks for subclusters whose differentially expressed
genes differ from those of their associated clusters. This step consists
ofaseries of tensubsteps. (1) Wereduced each cell’s expression vector
toretainonly protein-coding genes, long intergenic non-coding RNAs
(lincRNAs) and pseudogenes. (2) Genes expressed in fewer than 10 cells
and cells in which fewer than 100 genes were detected were further
filtered out. (3) The dimensionality of the data was reduced by PCA
(50 components) first on the top 5,000 most highly dispersed genes
and thenwith UMAP (max_components =2, n_neighbors =50, min_dist
=0.1, metric="‘cosine’) using Monocle 3-alpha'. (4) Cell clusters were
identifiedin UMAP 2D space using the Louvain algorithmimplemented
in Monocle 3-alpha (resolution =107%). Cell partitions were detected
using the partitionCells function implemented in Monocle 3-alpha.
This function applies algorithms that automatically partition cells to
learndisjoint or parallel trajectories based on concepts from ‘approxi-
mate graph abstraction’”’. (5) We took the cell partitions identified by
Monocle 3-alpha (cell clusters were used instead for three experiments
that profiled embryos before E10), downsampled each partition to
2,500 cells, and computed differentially expressed genes across cell
partitions with the top_markers function of Monocle 3 (reference_cells
=1000). (6) We selected agene set combining the top ten gene markers
foreachcell partition (filtering out genes with fraction_expressing <0.1
andthen ordering by pseudo_R2). (7) Cells from each main cell partition
were subjected to dimensionality reduction by PCA (10 components)
ontheselected set of top partition-specific gene markers. (8) Each cell
partition was further reduced to 2D using UMAP (max_components =
2,n_neighbors =50, min_dist=0.1, metric=‘cosine’). (9) The cells within
each partition were further sub-clustered using the Louvain algorithm
implemented in Monocle 3-alpha (resolution =10"* for most clustering
analysis). (10) Subclusters that expressed low levels of the genes that
were found to be differentially expressed in step 5, had high levels of
markers specific to a different partition, and had relatively high doublet
scores, were labelled as doublet-derived subclusters and removed from
the analysis. On average, this procedure eliminated 3.4% of cells from
each experiment (range 0.5-13.2%) of the cells in each experiment
(Extended Data Fig. 2a-e).

Cell clustering and cell-type annotations

For data from individual experiments, after removing the potential
doublets detected by the above three steps, we further filtered out the
potential low-quality cells by investigating the numbers of UMIs and the
proportion of reads mapping to the exonic regions per cell (Extended
Data Fig. 2f). Then, we merged cells from individual experiments to
generate the penultimate dataset, which included 15 sci-RNA-seq3
experiments and 21 runs of the lllumina NovaSeq instrument. In our
early embeddings of this penultimate dataset, we noticed that one
mouse embryo at E14.5 had a grossly reduced proportion of neuronal
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cells. This particular sample had been divided during pulverization, and
we suspect that specificanatomical portions of the frozen embryo did
not make it into the experiment. We therefore removed cells from this
E14.5embryo, and we further filtered out cells from the whole dataset
with doubletscore (by Scrublet) > 0.15 (-0.3% of the whole dataset), as
well as cells with either the percentage of reads mapping to ribosomal
chromosome (Ribo%) > 5 or the percentage of reads mapping to mito-
chondrial chromosome (Mito%) >10 (-0.1% of the whole dataset). Finally,
11,441,407 cells from 74 embryos were retained, of which the median UMI
count per cellis 2,700 and mediangene count detected per cellis1,574.
For this final matrix, the number of cells recovered by each embryo and
the basic quality information for cells from each sci-RNA-seq3 experi-
mentissummarizedinthe Supplementary Tables1and 2. For sex separa-
tion and confirmation of embryos with or without sex genotyping, we
counted reads mapping to a female-specific non-coding RNA (Xist) or
chromosomeY genes (except Erdrl whichisinboth chromosome X and
chromosome Y). Embryos were readily separated into females (more
reads mapping to Xist than chromosome Y genes) and males (more
reads mapping to chromosome Y genes than Xist).

We then applied Scanpy v.1.6.0%° to this final dataset, perform-
ing conventional single-cell RNA-seq data processing: (1) retaining
protein-coding genes, lincRNA, and pseudogenes for each cell and
removing gene counts mapping to sexchromosomes; (2) normalizing
the UMI counts by the total count per cell followed by log transforma-
tion; (3) selecting the 2,500 most highly variable genes and scaling the
expression of each to zero mean and unit variance; (4) applying PCA
and then using the top 30 principal components to calculate a neigh-
bourhood graph (n_neighbors = 50), followed by Leiden clustering
(resolution =1); (4) performing UMAP visualization in 2D or 3D space
(min.dist=0.1). For cell clustering, we manually adjusted the resolution
parameter towards modest overclustering, and then manually merged
adjacent clustersif they had alimited number of DEGs relative to one
another oriftheyboth highly expressed the same literature-nominated
marker genes. For each of the 26 major cell clusters identified by the
global embedding, we further performed a sub-clustering with the
similar strategies, except setting n_neighbors =30 when calculating
the neighbour graph and min_dist = 0.3 when performing the UMAP.
Subsequently, we annotated individual cell clusters identified by the
sub-clustering analysis using at least two literature-nominated marker
genes per cell-type label (Supplementary Table 5).

Tobeclear, we have hierarchically nominated three levels of cell-type
annotations in the manuscript. (1) In the global embedding involving
all11.4 M cells weidentified 26 major cell clusters (Fig. 1b,c and Supple-
mentary Table 4). (2) Forindividual major cell clusters, we performed
sub-clustering, resulting in 190 cell types (Extended Data Fig. 3 and
Supplementary Table 5). (3) For ahandful of cell types, in specific parts
of the manuscript, we performed further sub-clustering, to identify
cell subtypes. For example: (i) we re-embedded 745,494 cells from the
lateral plate and intermediate mesoderm derivatives, identifying 22
subtypes, most of which correspond to different types of mesenchymal
cells (Fig. 3d and Supplementary Table 12). (ii) we re-embedded 296,020
cells (glutamatergic neurons, GABAergic neurons, spinal cord dorsal
progenitors and spinal cord ventral progenitors) from stages <E13,
identifying 18 different neuron subtypes (Fig. 4e and Supplementary
Table12).

Of note, we processed and analysed the birth series dataset
(n=962,697 nuclei after removing low-quality cells and potential dou-
blets cells) and the early versus late somites data (n =104,671 nuclei
after removing low-quality cells and potential doublets cells) using
exactly the same strategy, except without performing sub-clustering
on each major cell cluster.

Whole-mouse embryo analysis
Each cell was assigned to the mouse embryo from which it derived
based onits reverse transcription barcode. For each of the 74 samples,

UMI counts mapping to the sample were aggregated to generate a
pseudo-bulk RNA-seq profile for the sample. Each cell’s counts were
then normalized by dividing by its estimated size factor. The datawere
then log,-transformed after adding a pseudocount, and PCA was per-
formed on the transformed data using the 3,000 most highly variable
genes. The normalization and dimension reduction were performed
using Monocle v3.

Quantitatively estimating cell number for individual mouse
embryo at any stage during organogenesis

To estimate the cell number of individual embryos, we selected arep-
resentative embryo from12 timepoints at 1-day increments, from E8.5
to PO (roughly considered as E19.5). Each embryo was digested with
proteinase K overnight, and total genomic DNA was isolated with a
Qiagen Puregene tissue kit (Qiagen 158063). DNA was quantified and
cell number was estimated by taking the total ng of recovered DNA
and assuming 2.5 billion base pairs per mouse genome (times two for
adiploid cell), 650 g per mole of a base pair. Estimating cell number
this way does not include any losses due to the DNA preparation, and
does not count non-nucleated cells.

Based on the experimentally estimated cell numbers of those 12
embryos, we applied polynomial regression (degree=3) tofixacurve
across embryos betweenthe embryonic day and log,-scaled cellnumber
(adjusted R*> 0.98) (Extended Data Fig. 21). PO was treated as E19.5in
the model. Then, the total cell number of a whole mouse embryo at
any day between E8.5 and PO is predicted using the below formula:

log,(cell number) =0.011369 x day® - 0.583861 x day>+10.397036 x day
-35.469755

To estimate the dynamic ‘doubling time’ of the total cell number in
awhole mouse embryo, at agiven timepoint (day), we took the deriva-
tive from the above formula as the log,-scaled proliferation rate p(day),
and then calculated 24 x 2/2P“) resulting in a point estimate of the
number of hours required for the mouse embryo to double its total
cell number (Extended Data Fig.2m).

Characterizing transcriptional heterogeneity in the posterior
embryo
Were-analysed 121,118 cells which were initially annotated as NMPs and
spinal cord progenitors, mesodermal progenitors (Thx6°), notochord,
ciliated nodal cells, or gut, from embryos during the early somitogen-
esis (somite counts 0-34; ES8-E10). Three clusters were identified, with
cluster 1 dominated by NMPs and their derivatives (n = 98,545 cells),
cluster 2 dominated by notochord and ciliated nodal cells (n =3,949
cells), and cluster 3 dominated by gut cells (n =18,624 cells).
Tocharacterize transcriptional heterogeneity withineach of the three
cellclusters, we performed PCA onthe 2,500 most highly variable genes
in each cluster. Then, we calculated the Pearson correlation between
the expression of the top highly variable genes and each of the top
principal components within each of the three cell clusters. In brief,
for each cell cluster, the top 2,500 highly variable genes were identi-
fied and their gene expression values were calculated from original
UMI counts normalized to total UMIs per cell, followed by natural-log
transformation and scaling. After performing Pearson correlation with
theselected principal component, significant genes were identified if
their correlation coefficients are less than mean - 1 x s.d. or greater than
mean +1 x s.d. of all the correlation coefficients, and false discovery
rate < 0.05. In addition, we identified differentially expressed genes
between early (n =4,949 cells) and late (n = 3,910 cells) NMPs, using
the FindMarkers function of Seurat v3%, after filtering out genes that
aredetectedin<10% of cellsin both of the two populations. Significant
genes wereidentified if their absolutely log-scaled fold changes >0.25,
and adjusted P values < 0.05. Of note, here cells are labelled as NMPs
ifthey are both strongly T* (raw count >5) and MeisI” (raw count =0).
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InFig. 2k, the Pearson correlation coefficient between gene expres-
sion for the top highly variable genes and either PC1 of notochord (x
axis) or PC1 of gut (y axis) are plotted. The overlapped genes between
two cell clusters are shown as each dot, and the overlapped significant
genes are highlighted in blue. The first quadrant corresponds to the
inferred anterior aspect of each cluster, while the third quadrant cor-
respondsto the inferred posterior aspect. InFig. 2, the log-scaled fold
change of the average expression for the top highly variable genes
between early versus late NMPs (x axis), and the Pearson correlation
coefficientbetween gene expression for the top highly variable genes
and PC2 of gut (y axis) are plotted. The first quadrant is associated
with early somite counts for each cluster, while the third quadrant is
associated with late somite counts. Inthe gene expression line plotsin
Fig.2e, leftand Fig. 2k, |, right, gene expression values were calculated
from original UMI counts normalized to total UMIs per cell, followed
by natural-log transformation. The line of gene expression was plotted
by the geom_smooth function in ggplot2.

Spatial mapping with Tangram

Toinfer the spatial origin of eachlateral plate and intermediate mes-
oderm derivative, we used a public dataset called Mosta*®, which
profiles spatial transcriptomes for 53 sections of mouse embryos
spanning 8 timepoints from E9.5 to E16.5. We combined this data
with our own data to perform spatial mapping analysis using Tan-
gram¥. In brief, for each timepoint of the Mosta data, we combined
scRNA-seq data from three adjacent timepoints from our data (for
example, E16.25,E16.5 and E16.75 from scRNA-seq versus E16.5 from
Mosta data), and the total number of voxels within each section was
randomly downsampled to 9,000 for computational efficiency. We
used the Tangram with default parameters to estimate the spatial
coordinates of cells from each cell type in the scRNA-seq data, and
then visualized the results on the coordinates provided by Mosta.
The Tangram model was trained in GPU mode using a NVIDIA A100
GPU. After applying Tangram, for each section, a cell-by-voxel matrix
with mapping probabilities was returned. This matrix shows the prob-
ability that each cell originated from each voxel in the section. To
reduce noise, we further smoothed the mapping probabilities for
each voxel by averaging values of their k-nearest neighbouring voxels
(kis calculated by natural-log-scaled total number of voxels on that
section) followed by scaling it to O to 1 across voxels of each section.
Although only selected results are presented inthe paper, the mapping
results for each Mosta section on which we performed this analysis
areavailable at https://github.com/ChengxiangQiu/JAX_code/blob/
main/spatial_mapping.tar.gz.

Generatinga cell-type tree for mouse development

We collected and combined scRNA-seq data from four published data-
sets, which consisted of 110,000 cells spanning EO to E8.5, and the main
dataset described in this paper, which consisted of 11.4 million cells
spanning E8 to PO (Supplementary Table 17). We generated the tree of
cell types for mouse development via the following steps.

First, based on data source, developmental window and cell-type
annotations, we split cells into fourteen subsystems which could be
separately analysed and subsequently integrated. The first two sub-
systems correspond to the pre-gastrulation and gastrulation phases of
developmentand are based on the external datasets*”. The remaining
12 subsystems derive from the data reported here, and collectively
encompass organogenesis and fetal development (Supplementary
Tables17 and 18).

Second, dimensionality reduction was performed separately on
cells from each of the fourteen subsystems. Manual re-examination
of each subsystemled to some corrections or refinements of cell-type
annotations, ultimately resulting in 283 annotated cell-type nodes,
some with only a handful of cells (for example, 60 ciliated nodal
cells) and others with vastly more (for example, 650,000 fibroblasts)

(Supplementary Tables 19 and 20). Of note, each of these annotated
cell-type nodes derives from one data source, such that there are some
redundant annotations that facilitate ‘bridging’ between datasets
(Extended Data Fig. 11d-h). In contrast to our previous strategy in
which nodes were stage-specific®, each cell-type node here is tem-
porally asynchronous, and of course may also contain other kinds of
heterogeneity (for example, spatial, differentiation, cell cycle and
others).

Third, we sought to draw edges between nodes (Fig. 5a-f). Within
each subsystem, we identified pairs of cells that were MNNs in
30-dimensional PCA space (k =10 neighbours for pre-gastrulation
and gastrulation subsystems, k =15 for organogenesis and fetal devel-
opment subsystems). Although the overwhelming majority of MNNs
occurred within cell-type nodes, some MNNs spanned nodes and are
presumably enriched for bona fide cell-type transitions. To approach
this systematically, we calculated the total number of MNNs that
spanned each possible pair of cell-type nodes within a given subsys-
tem, normalized by the total number of possible MNNs between those
nodes, and ranked all possible intra-subsystem edges based on this
metric (Supplementary Table 21). Of note, due to its complexity, this
was done in two stages for the ‘Brain and spinal cord’ subsystem, first
applyingthe heuristic to the subset of cell types corresponding to the
patterned neuroectoderm, and then again to identify edges between
the patterned neuroectoderm and its derivatives (that is, neurons,
glial cells and others).

Fourth, we manually reviewed the ranked list of 1,155 candidate
edges for biological plausibility (those with a normalized MNN score
>1; Extended Data Fig. 11d), resulting in 452 edges which we manu-
ally annotated as more likely to correspond to either ‘developmental
progression’ or ‘spatial continuity’ (Supplementary Table 22). Where
nodes were connected to more thanone other node, distinct subsets of
cellswere generally involvedin each edge (Fig. 5a,b,d,e), and inter-node
MNN pairs exhibited temporal coincidence (Fig. 5¢,f). As only a handful
of cells were profiled in the pre-gastrulation subsystem, those edges
were added manually.

Finally, to bridge subsystems, we performed batch correctionand
co-embedding of selected timepoints from either the pre-gastrulation
and gastrulation datasets, or the gastrulation and organogenesis and
fetal development datasets, to identify equivalent cell-type nodes,
resultinginathird category of ‘dataset equivalence’ edges (Extended
Data Fig. 11e-h). For example, we performed anchor-based batch
correction® followed by integration between cells from E6.5to E8.5
generated on the 10x Genomics platform’ (n = 108,857 cells) and
the earliest 1% of this dataset (0-12 somite stage embryos) gener-
ated by sci-RNA-seq3 (n =153,597 nuclei) (Extended Data Fig. 11e,f).
This allowed us to identify 36 cell types from the integrated dataset,
which we used to identify bridging edges between the gastrulation
subsystemand the later subsystems (Extended DataFig. 11g,h). Most
ofthe12 organogenesis and fetal development subsystems originate
in cell-type nodes for which equivalent nodes are already present at
gastrulation. The exceptions, presumably due to undersampling of
this transition, were the ‘blood” and ‘PNS neuron’ subsystems, for
which we manually added edges to connect them with biologically
plausible pseudo-ancestors. Altogether, we added 55 inter-subsystem
edges.

In practice, asmall number of nodesin the tree have more than one
parent, sothe‘tree’is formally arooted, directed graph that represents
mouse development from EO to PO. The visualization shownin Fig. 5g
was created using yFiles Hierarchical layout in Cytoscape v3.9.1. For
presentation purposes, we removed most of the spatial continuity
edges, except for those between spinal cord dorsal and ventral progeni-
torsafter E13.0 and GABAergic and glutamatergic neurons after E13.0.
We also merged nodes with redundant labels derived from different
datasets (thatis, dataset equivalence edges). This resulted inarooted
graph with 262 cell-type nodes and 338 edges.
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Our evaluation of the robustness of our approach to technical fac-
tors or parameter choicesis provided in Extended Data Fig. 11a-c and
Supplementary Note 2.

Nominating key transcription factors and genes

The list of 1,636 mouse proteins that are putatively transcription fac-
tors was collated from AnimalTFDB v3 (http://bioinfo.life.hust.edu.
cn/AnimalTFDB/)’®. For each edge in the cell-type tree, we stratified
each cell-type transition into four phases. Specifically, we identified
the subset of cells within each node that were either ‘inter-node’ MNNs
of the other cell-type or ‘intra-node’ MNNs of those cells. If A > B, this
approach effectively models the transition as group1>2->3->4
(Extended DataFig.11i,j). Next, we identified DETFs and genes (DEGs)
across each portion of the modelled transition—that s, early (1~ 2),
inter-node (2 > 3) and late (3 > 4)—by applying FindMarkers function
in Seurat v3 with parameters (logfc.threshold = 0, min.pct = 0). This
strategy highlights differences between cells that are most proximate
to the cell-type transition itself.

After excluding dataset equivalence edges and the ‘pre-gastrulation’
subsystem, we nominated key transcription factors and genes that
specify cell types for each of the 436 edges. Of note, the directionality
of many of these edges was not immediately obvious (that is, those
annotated as “spatial continuity” edges). Inthese cases, the orientation
of the ‘early’ and ‘late’ phases is arbitrary. For edges with arelatively
small number of MNN pairs, we expanded each group to at least 200
cells by iteratively including their MNNs within the same cell type, to
increase statistical power.

Identifying cell types with abrupt transcriptional changes

before versus after birth

To systematically identify which cell types exhibit abrupt transcrip-

tional changes before versus after birth, we performed the following

steps.

» Wefocused onthe 71 cell types with at least 200 cells from PO and at
least 200 cells from at least 5 timepoints prior to PO.

« We combined cells from animals collected subsequent to E16 and
performed PCA based on the top 2,500 highly variable genes.

« Timepoints with atleast 200 cells were selected and cells were down-
sampled from each timepoint to the median number of cells across
those selected timepoints.

« The k-nearest neighbours (k was adjusted for different cell types, by
taking the log,-scaled median number of cells across the selected
timepoints) were identified in PCA space (n =30 dimensions).

» We calculated the average proportion of nearest neighbour cells that
were froma different timepoint for cells within each cell type. In this
framing, a low proportion of neighbours from different timepoints
corresponds to arelatively abrupt change in transcriptional state.

We subjected the birth-series dataset to a similar analysis. For each

major cell cluster in the birth-series dataset, we took cells from the 6
pups delivered by C-section and calculated the Pearson correlation
coefficient between the timepoint of each cell and the average time-
points of its 10 nearest neighbours identified from the global PCA
embedding (n =30 dimensions). In this framing, a high correlation
indicates that the cell and its nearest neighbours all underwent rapid,
synchronized changes in transcriptional state.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data generated in this study can be downloaded in raw and pro-
cessed forms from the NCBI Gene Expression Omnibus (GEO) under

accession numbers GSE186069 and GSE228590. The dataare also avail-
able at https://omg.gs.washington.edu/, together with abrowser that
enables its visual exploration. The data are accessible for download
and visualization on CELLXGENE. The published datasets analysed for
this study were retrieved from either the GEO repository (GSE44183,
GSE100597 and GSE109071), https://github.com/MarioniLab/
EmbryoTimecourse2018 or https://db.cngb.org/stomics/mosta/ and
re-processed. Published in situ hybridization images were obtained
from the MGl website (https://www.informatics.jax.org/). Mouse ref-
erence genome (mml0) and gene annotations (GENCODE VM12) were
used for read alignment and gene count matrix generation. Source data
are provided with this paper.

Code availability

The Python and R code used to analyse RNA-seq data is available at
https://github.com/ChengxiangQiu/JAX_code.
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Extended DataFig.1|Embryos were collected and staged based on
morphological features, including somite number and limb bud geometry.
a, Embryos harvested between E8 and E10 were precisely staged based upon
somite counting. Harvested embryos were grouped into bins based on somite
countingand further characterized based upon morphological features.
Stage-representative images are shown with details of the main staging criteria
foreach coarse temporal binlisted. The approximately overlapping Theiler
Stage (TS) isalso noted for reference. Scale bar:200 um. b, After E10, embryos
were precisely staged based on morphological features. This was mainly done
using the embryonic mouse ontogenetic staging system (eMOSS), an automated
process thatleverages limb bud geometry to infer developmental stage” 2.
Staging results derived from eMOSS are designated with “mE” for morphometric
embryonic day. Specifically, for each temporal bin at 6-hrincrements from
E10.25-E11.75, animage of a stage-representative embryo isshownin the top
row.Images ofeachembryo’slimbbud (white dashed outline) used for staging
areshowninthebottomrow. Scalebar:400 um (top)/200 um (bottom). ¢, View

ofthe craniofacial region of embryos shownin panel bdemonstrates that limb
budstagingalsorecreates the ordered ontogenetic progression of craniofacial
morphogenesis, including development of the brain, eye, and outgrowth of
facial prominences (black dashed line highlights maxillary process). Scale bar:
200um.d, Foreachtemporal binat 6-hrincrements from E12.0-E14.25, an
image ofarandomly selected embryois showninthe top row. The subview
ofiits hindlimb is shown in the bottom row. Scale bar: 400 um (top)/200 um
(bottom). e, eMOSS s able to stage E10.25-E14.75, after which limb morphology
becomestoo complex. We defined additional dynamics related to digit
formation to stage E15.0-E16.75 embryos. However, the remaining timepoints
(E17.0-E18.75) were staged based upon gestational age. For each temporal bin
at 6-hrincrements from E15.0-E18.75, animage of the hindlimbs of arandomly
selected embryois shown. Scalebar:200 um.f, For eachtemporal binat 6-hr
increments from E15.0-P0, animage of astage-representative embryois shown.
Scale bar:1mm (except for PO embryos).
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Extended DataFig. 2| Quality control onsci-RNA-seq3 experiments. a, We
performed three steps to detect and remove potential doublets from each
single sci-RNA-seq3 experiment. First, we used Scrublet to calculate adoublet
score for each cell. Cells withadoubletscore over 0.2 were annotated as
detected doublets. Second, we clustered and subclustered the entire dataset.
Subclusterswithadetected doublet ratio over 15% were annotated as doublet-
derived subclusters. Third, after removing doublets detected by the first two
steps, we performed clustering again to identify the major cell partitions (i.e.
disjointtrajectories). Three experiments (runs4,15,and 17) that profiled
embryos before E10 used cell clustersinstead of cell partitions. We then
generated auniongene list by combining the top 10 differentially expressed
genes from each cell partition. This gene list was used to perform subclustering
oneach cell partition. Subclusters that showed low expression of target cell
partition-specific markers and enriched expression of non-target cell cluster-
partition markers were identified as doublet-driven clusters. More details are
providedinthe Methods. The percentage of cells detected and removed as
doublets by each of the three stepsinindividual sci-RNA-seq3 experiments is
shown.b, Thelabeled cell partitions for each of six selected experiments are
shown, after removing doublets from the first two steps. ¢, Example of
detection of doublet-driven subclusters viastep 3. Re-embedded 2D UMAP of
cells from partition 4 of experiment run_16, with cells colored by subclusters.
Thesame UMAP is shown below, with cells colored by doublet score calculated
by Scublet.d, The same UMAP as in panel c, colored by the normalized gene
expression of the top 10 differentially expressed genesin either partition 3
(top) or partition 4 (bottom). e, The same UMAP as experiment run_16 in panel
b, highlighted by doublets detected instep 3 (red). f, Histograms of log,(UMI
count) per single nucleus for each of 15 sci-RNA-seq3 experiments. For the 14
newly performed experiments (run_13 to run_26), upper (blueline) and lower
(redline) thresholds used for quality filtering correspond to the mean plus 2
standard deviations and mean minus 1standard deviation of log2-scaled
values, respectively, after excluding cells with >85% of reads mapping to exonic
regions (except for the lower bound of 500, which was manually assigned for
run_25), areshown with vertical lines. The data of run_4, which was reported
previously®, was subjected to the same thresholds used in the original study, i.e.
the mean +/-2standard deviations oflog2-scaled values (blue and red vertical
lines, respectively), after excluding cells with >85% of reads mapping to exonic
regions.Run_23_A & Bwere from the same sci-RNA-seq3 experiment, but with
nuclei which were sequenced separately. g, Although most of the embryos
fromthe same approximate stage (e.g. E14.0-E14.75) were included in the same
sci-RNA-seq3 experiment (Supplementary Table 1), we profiled extranucleiin
some experiments for ahandful of timepoints to ensure sufficient coverage.

Here we sought to leverage those instances to check for potential batch effects
across experiments. For this, on theembeddinglearned fromall of the data, we
asked whether these cells’ profiles are more similar to cells from the same
experimentor, alternatively, cells from the same time window. Top: for a
random subset of cells from E14.75 which were profiled inexperiment run_22
(primarily E17.0-E17.75), we performed a k-nearest neighbors (k<NN, k = 10)
approachintheglobal 3D UMAP to find the nearest neighboring cells either
from the same experiment (red) or the same time window (E14.0-E14.75) but
different experiment (blue). The percentages of the nearest neighboring cells
fromthe two groups forindividual cells are presented in the histogram.
Bottom: asimilar analysis was performed for arandom subset of cells from
E13.5 &E13.75 whichwere profiled in experiment run_19 (primarily E10.5-E11).
Inbothexamples, we observe that nearest neighbors are overwhelmingly cells
fromadifferent experiment (but the same time window), rather than cells from
thesame experiment (but a different time window). h, Cells processedin
different experiments are well-integrated withoutbatch correction. To further
check for potential batch effects, we generated co-embeddings of samples
processed from adjacent timepointsin different experiments, without batch
correction.i, We also generated aco-embedding of cells fromrun_23_A (red)
andrun_23_B (green), which derived from the same sci-RNA-seq3 experiment
butwere sequenced ondifferent NovaSeqruns. j, Embeddings of pseudo-bulk
RNA-seq profiles of 74 mouse embryos in PCA space with visualization of top
three PCs. Embryos are colored by either developmental stage (left) or data-
inferred sex (right). k, Ambient noise (e.g. as might be due to transcript leakage)
was assessed by examining hemoglobin and collagen transcripts. The
distribution of the number of reads mapping to each selected hemoglobin or
collagen gene across cells, for the cell type that is expected to express that gene
athighlevels (red) vs. all other cell types (blue). The mean UMI counts of cellsin
eachgrouparealsoreported. The overall levels of ambient noise as assessed by
these transcripts was low, e.g. the mean number of UMIs for Hbb-bs was10.8 in
definitiveerythroid cellsand 0.26 in all other cells, and for Collal was 186 in
pre-osteoblastsvs.1.23inall other cells. 1, Quantitatively estimating cell
number forindividual mouse embryos as a function of developmental stage.
Based onthe experimentally estimated cellnumbers of the12embryos
(ranging from E8.5to PO), we applied polynomial regression (degree=3) tofix a
curveacross embryos between the embryonic day and log2-scaled cell number.
POwastreatedasE19.5inthe model. m, The estimated “doubling time” of the
total cellnumberinawhole mouse embryo are plotted as afunction of
timepoints. The timepoints with the longest (E17.0) and shortest (E8.5)
estimated “doubling times” are highlighted.
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Extended DataFig. 3| Cell type annotations. For each of the 26 major cell clusters, we performed subclustering and then annotated each of 190 subclusters

using at least two literature-nominated marker genes per cell type label (Supplementary Table 5).
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Extended DataFig. 4 |Transcriptional heterogeneity in the posterior
embryo during early somitogenesis. a, A validation sci-RNA-seq3 dataset of
mouse embryos fromsomites 8to 21. To validate findings related to differences
between embryos staged with early vs. late somite counts, particularly in NMPs,
we profiled another12 precisely staged mouse embryos, ranging from 8 to 21
somites, inanindependentsci-RNA-seq3 experiment. Theresulting library was
sequenced onanIlluminaNextSeq2000, resultingin104,671 cellsintotal, witha
median UMI count of 513 and amedian gene count of 446 per cell. The number of
cells profiled from eachembryo. b, 2D UMAP visualization of the validation
dataset (all cell types). ¢, The same UMAP asin panel b, with cells colored by
somite count of the originatingembryo.d, Re-embedded 2D UMAP of 9,686 cells
from NMPs & spinal cord progenitors (cluster 11) and mesodermal progenitors
(Tbx6 +) (cluster 14) in panel b. Cells are colored by either the original annotation
(top) or somite count (bottom). e, The same UMAP asin panel d, colored by gene
expression of marker genes which appear specific to different subpopulations of
NMPs: column1: differences between neuroectodermal (Sox2 +) vs. mesodermal
(Tbx6 + ) fates; column 2: the differentiation of bipotential NMPs (T +, Meis1-)
towards either fate; column 3: earlier (Cdx1 +) vs. later (HoxalO +) NMPs.
References for marker genesare provided in Supplementary Table 12.f, Within
the cellsshownin paneld, the proportion of cells (y-axis) which express either
CdxI (top) or HoxalO (bottom) are plotted as afunction of somite count of the
originatingembryo. g, Transcriptional heterogeneity in the posteriorembryo
during the early somitogenesis. The same UMAP asin Fig. 2g, colored by gene
expression of marker genes which appear specific to the subpopulation of
notochord cluster thatis Noto +, including posterior Hox genes (Hoxc6, Hoxc8,
Hoxal0),and genes involved in Notch signaling (Hes7), Wnt signaling (Wnt3) and
mesodermal differentiation (Tbx6). h, Cell proportions falling into the ciliated
nodal cell cluster forembryos with different somite counts. i, The same UMAP as

inFig.2g, colored by gene expression of marker genes which appear specific to
the subpopulation of the notochord Noto- and more strongly Shh +, including
Sox10,Bmp3,Nrgl, and Erbb4.j, The same UMAP asin Fig. 2i, colored by gene
expression of marker genes which appear specific tothe posterior gut
endoderm, including 7, Hoxa7, Hoxb8, Hoxd13, and Hoxc9.k, Checking the
consistency of Npm1signatures across different batches. First, we downsampled
the dataset to-~1M cells using geosketch’ and performed k-means clustering to
ensure that each cluster contained roughly 500 cells. Second, we aggregated
UMl counts for cells within each cluster to generate 2,289 meta-cells, and
normalized the UMI counts for each meta-cell followed by log2-transformation.
Third, we performed Pearson correlation between each protein-coding gene and
Npml,andselected genes with correlation coefficients > 0.6 (738 genes, -3% of
the total protein coding genes). A gene set enrichment analysis suggests that the
moduleisassociated with RNP complexes (corrected p-value =1.4e-105),
cytoplasmictranslation (corrected p-value = 2.8e-90), and ribosomal proteins
(corrected p-value = 7.4e-71). Finally, we summed the normalized UMI counts of
these genesto calculate a Npm1Isignature for individual cells. The resulting Npm1
signatures are subsetted in four plots, fromleft to right: by sci-RNA-seq3
experiment, embryo harvest date, litter of embryos, or shipmentbatch. I, Same
aspanel k, but further stratified by the top 10 abundant major cell clusters.
Boxplots,inpanelk (n=1,144,141cells) and 1 (n=299,725 cellsin Mesoderm,
n=127,150 cellsin Whiteblood cells,n=104,205 cells in CNS neurons, n=73,005
cellsinDefinitive erythroid, n= 66,772 cellsin Epithelial cells, n = 64,845 cellsin
Hepatocytes, n=62,951cellsin Endothelium, n = 61,249 cellsin Muscle cells,
n=52,748 cellsinNeuroectodermand glia, n=45,940 cellsin Intermediate
neuronal progenitors), represent IQR (25th, 50th, 75th percentile) with whiskers
representing1.5xIQR.
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Extended DataFig. 5| Transcriptional heterogeneity inrenal development.
a, Thesame UMAP asinFig.3a, colored by expression of marker genes which
appear specificto anteriorintermediate mesoderm (Pax2 +, Pax8 +, SimI +,
Lhx1+,Ret +), posteriorintermediate mesoderm (Pax2 +, Pax8 +, Gdnf1 +, WtI +,
Osrl +,Hoxc6 +), ureteric bud (Ret +, Wnt11 +) or metanephric mesenchyme
(Wt1 +,Six2 +, Eyal +). References for marker genes are providedin
Supplementary Table 5. b, The predicted absolute number (log2 scale) of cells
of eachrenal celltype at each timepoint. The predicted absolute number was
calculated by the product ofits sampling fractionin the overallembryo and the
predicted total number of cells in the whole embryo at the corresponding
timepoint (Fig.1b). For each row, the first timepoint with at least 10 cells
assigned that celltype annotationislabeled, and all observations prior to that
timepointarediscarded.c, Thesame UMAP asinFig.3a, colored by expression
of marker genes which appear specific to podocytes (Nphsl +, Nphs2 +),
proximal tubule cells (Slc27a2 +, Lrp2 +), ascending loop of Henle (Umod +,
Slc12al +), distal convoluted tubule (Slc12a3 +, Pvalb +), collecting duct
intercalated cells (Atp6vig3 +, Atp6v0d2 +) or collecting duct principal cells
(Agp2 +,Hsd11b2 +). References for marker genes are provided in Supplementary

Table 5.d, Thesame UMAP as Fig. 3ais shown three times, with colors
highlighting cells from before E18.75 (left), E18.75 (middle), or PO (right).
Dotted cycles highlight cells which appear to correspond to the proximal
tubule.e, The same UMAP asin Fig. 3a, colored by expression of marker genes
which appear specific to the ureteric bud tip (Wntl1I +, Ret +, EtvS +) or stalk
(Wnt7b +, Tacstd2 +)*°. Ureteric bud tip and stalk are highlighted by blue and red
circles, respectively. f,Re-embedded 2D UMAP of 2,894 cells from connecting
tubule cells, collecting duct principal cells (CD-PC), and collecting duct
intercalated cells (CD-IC). Cells are colored by either their initial annotations
(top) or timepoint (bottom). Black circles highlight the cells which appear tobe
either type A (A-IC) or type B (B-IC) intercalated cells. g, The same UMAP asin
panelf, colored by expression of marker genes specific to CD-IC (Atp6vibl +),
A-IC (Kit +,Slc4al +),B-1C (Slc26a4 +), CD-PC (Agp2 +, Agp4 +), and connecting
tubule (Agp2 +,Agp4-) (Supplementary Table 12). h, The same UMAP as in
Fig.3a, colored by expression of marker genes which appear specific to
connecting tubulecells (Agp2 +,Agp3 +, Agp4-) or collecting duct cells (Agp2 +,
Agp3+,Aqp4+,AqpS+)*°.
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Extended DataFig. 6 | Transcriptional heterogeneity in mesenchyme.

a, Thesame UMAP asinFig.3d, colored by expression of marker genes which
appear specifictolung mesenchyme (7bx5 +, Tbx4 + ), hepatic mesenchyme
(Reln +), gut mesenchyme (Nkx2-3 +), foregut mesenchyme (BarxI +),amniotic
mesoderm (Postn + ), renal medullary stromal cells (Foxd1 +, Tcf21 +), renal
cortical stromal cells (Pax2 +, Pax8 +), meninges (Vtn +), airway smooth muscle
cells (Trpc6 +, Tbx5 +), gastrointestinal smooth muscle cells (Nkx2-3 +),
proepicardium or mesothelium (Msln +). References for marker genes are
providedinSupplementary Table12.b, Published in situ hybridization (ISH)
images supportour annotations of lateral plate and intermediate mesoderm
derivatives. Ineachsubpanel (defined by dotted rectangles), three rows are

shown for one or two lateral plate and intermediate mesoderm derivative cell
types. Notably, each of these cell types was annotated based on spatial mapping
analysis, as shownin Fig.3e. Top: The same UMAP as in Fig. 3d, colored by gene
expression of marker genes whichappear specific to the given cell type. Middle:
Virtualinsitu hybridization (ISH) images of individual genes from one selected
section (E1S1) from E14.5 of the Mosta data (https://db.cngb.org/stomics/
mosta/). Bottom: Insitu hybridization (ISH) images of individual genes were
obtained from the Jackson Laboratory Mouse Genome Informatics (MGI)
website (https://www.informatics.jax.org/). The original reference for these
ISHimages are®3.
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Extended DataFig.7| Assessing the potential origins of LPM subsets
annotated asrenal cortical & medullary stromal cells. a, Re-embedded 2D
UMAP of 39,468 cells fromrenal cortical & medullary stromal cells. Cells are
colored by either annotation (top) or timepoint (bottom, after downsampling
toauniformnumber of cells per time window). b, Top: The same UMAP as in
panel a, colored by gene expression of marker genes which appear specific to
renal cortical & medullary stromal cells. Both cell types express Foxd1, Prrx1,
Pdgfra, and Pdgfrb, but only renal cortical stromal cells express Six2. Middle:
Virtualinsitu hybridization (ISH) images of individual genes. Bottom: ISH
images of individual genes. ¢, Top: The same UMAP as in panel a, colored by
gene expression of marker genes which appear specific to renal cortical
stromal cells (Eyal +, Pax2 +), and renal medullary stromal cells (LrrigI +,
Acta2 +,Pparg+,Myhll+).Middle: Virtual ISHimages of individual genes.
Bottom:ISHimages of individual genes. d, Re-embedded 2D UMAP 0f 206,908
cellsfromrenal cortical & medullary cells, anterior intermediate mesoderm,
posteriorintermediate mesoderm, metanephric mesenchyme, and splanchnic

mesoderm. Cellsare colored by either their initial annotations (left) or
timepoint (right, after downsampling to a uniform number of cells per time
window). e, The average normalized expression of FoxdI over timeis shown for
renal cortical stromal cells (left) and renal medullary stromal cells (right). Gene
expression was normalized by the size factor estimated by Monocle/3.f, Top:
Thesame UMAP asin panel a, colored by gene expression of marker genes
which appear specific to two subsets of renal stromal cells: medullary renal
stromal cells (Zeb2 +, Plcbl + ) and cortical renal stromal cells (Ntnl +, Zbtb7c +,
Sema3d +), respectively. Middle: Virtual ISH images of individual genes.
Bottom:ISHimages ofindividual genes. In panel b, c, and f, virtual ISH images
ofindividual genes were obtained from one selected section (E1S1) from E14.5
of the Mosta data (https://db.cngb.org/stomics/mosta/). ISHimages were
obtained fromthe Jackson Laboratory Mouse Genome Informatics (MGI)
website (https://www.informatics.jax.org/). The original reference for these
ISHimages are®5284,


https://db.cngb.org/stomics/mosta/
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Extended DataFig. 8| The emergence of mesenchymal subtypes from the
patterned mesoderm. a, The predicted absolute number (log2 scale) of cells
of eachmesoderm cell type at each somite count. The predicted absolute
number was calculated by the product of its sampling fraction in the overall
embryo and the predicted total number of cellsin the whole embryo at the
corresponding timepoint. Because cellnumbers were only predicted for the
broader bins (Fig.1b), rather thanindividual somite counts, these were used for
roughly corresponding sets (0-12 somite stage: E8.5; 14-15somite stage: E8.75;
16-18 somite stage: E9.0; 20-23 somite stage: E9.25;24-26 somite stage: E9.5;27-
31somite stage: E9.75; 32-34 somite stage: E10.0). For eachrow, the first somite
countwithatleast10 cellsassigned that cell type annotationislabeled, and all
observations prior to that somite countare discarded. b, Re-embedded 2D
UMAP 0f110,753 cells from the selected cell types of mesoderm (clusters1-12 as
listed in panel a) from 5-20 somite stage embryos. ¢, The same UMAP as in panel
b, butwithinferred progenitor cells colored by derivative cell type with the
highest mutual nearest neighbors (MNN) pairing score.d, Normalized MNN
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pairing score between mesodermal territories (column) and their inferred
derivative cell types (row) from 5-20 somite stage embryos. The selected cell
populationsare firstembedded into 30 dimensional PCA space, and then for
individual derivative cell types, MNN pairs (k =10 used for k-NN) between their
earliest 500 cells (inabsolute time) and cells from mesodermal territories are
identified. e, Re-embedded 2D UMAP 0f 275,000 cells from the selected cell
types of mesoderm (clusters1-18 as listed in panel a) from 26-34 somite stage
embryos. f, Thesame UMAP asin panel e, but withinferred progenitor cells
colored by derivative cell type with the highest MNN pairing score. g, Normalized
MNN pairing score between mesodermal territories (column) and their inferred
derivative cell types (row) from 26-34 somite stage embryos. The selected cell
populationsare firstembedded into 30 dimensional PCA space, and then for
individual derivative cell types, MNN pairs (k =10 used for k-NN) between their
earliest 500 cells (in absolute time) and cells from mesodermal territories are
identified.



Article

Tyr @ Oca2 @ Cendl @ Sox2 @

Iris pigment e
cell trajectory oY 2; o1gEe)
% s o
- 05
Amacrine & \’ o I‘“‘
Horizontal -05

1e &
cell trajectorys ”
e Vsx2 6  Neurodi & o1 ®

% E125
\-’E" Iogi'ﬂl()Expi 15
’ 05 E10.5
2§ © \] g 0.0 E95
<3 Photoreceptor 3 A 05
& oy o cell trajectory S . ’ E85
: . : « :
* o ¥ o o Crx @ Cnga3 Thrb Nri @ Nr2e3 @
Yre oo ° Yo oo i g.. ® UMAP 1
Umap " Umap . © B, og 10(Exp)
g " s e 1.
@Eye field ® Ciliary margin cells 11 PV-containing retinal ganglion cells > 1.0 A
@Retinal pigment cells @ Photoreceptor precursor cells (& Amacrine/Horizontal precursor cells Lo - v 05 1
3 Naive retinal progenitor cells@ Cone precursor cells 13 Amacrine cells r i 7 g 0.0
@Retinal progenitor cells 9 Rod precursor cells @ Horizontal cells ; 4 e - 05
5 Bipolar precursor cells 10 Retinal ganglion cells 5 Cholinergic amacrine cells & L 4 g #
Pousdf2 {0 Pousf2 11 Pvalb 11 Pta®  Trap2b @
Retinal ganglion Y * log10(Exp)
cell trajectory fa A 15
4 b/ "~ , B0
2~ y - ¢ “2 9 @ Before E13
2‘ =05 @®E13-E14
Retinal pigmei - & g
E15-E16
cell g Gad1 13 Nr4a2 13 saz® L @ Epft @  Chat @ logt0tExp) Ere-Ei
. ¢ o3 G 1.0 E17-E18
2 0.5 @ E18-PO
2 & F f / 0.0
Photoreceptor g B os oP0
celltrajectory " - - Amacrine & Horizontal UMAP 1
cell trajectory ra
e Pax6 Rax f 2 1 §
. £2
873 gf
] = !
Ta
2 E 4
log10(Exp) 8g ¥
15 gs ¥
10 =< of &
05 §’ g
00  J HOBOBoHoBONSHOBONSHOD: S UMAP 2
o5 BAROS - ANBB T FBBOONN DD
\é"uul .I_. UMAP 1
&

g | 1

log10(Exp) @6 Optic stalk =13
}-g 47 Iris pigment epithelium
05
00 M Emx1@®2 Emx2 @ 2

log10(Exp)
10

E15.0 5 05

0.0

05

@

evss [N

evso NN

E17.75 9

E13.25 i

vz s ANAANRRRRRHD =

Iog10(Exp)

Log,(Predicted cell number)

E1.75

log10(Exp)
10
05
0.0
-05

log10(Exp)

@ Telencephalon 5 Midbrain © MHB 11 Floorplate and p3 domain
2 Dorsal telencephalon ® Hypothalamus (Sim1+) 9 Anterior roof plate & Spinal cord/r7/r8

® Hypothalamus @ Anterior floor plate ([* Hindbrain (& Posterior roof plate

@ Diencephalon

Extended DataFig. 9|See next page for caption.



Extended DataFig.9|The timing and trajectories of retinal development,
and marker gene expression for different neuroectodermal territories.
a,Re-embedded 3D UMAP 0f 160,834 cells corresponding to the retinal
development from E8 to PO. Cells are colored by either theirinitial annotations
(left) or timepoint (right, after downsampling to a uniform number of cells per
time window). Arrows highlight five of the main trajectories observed.
b,Re-embedded 2D UMAP 0f 160,834 cells corresponding to the retinal
development from E8 to PO. Thesame UMAP asin panel a, except 2D instead of
3D projection. ¢, Thesame UMAP asin panel b, colored by gene expression of
marker genes for each annotated retinal cell type. References for marker genes
areprovidedinSupplementary Table 5.d, Re-embedded 2D UMAP of the subset
of cellsin panelafromstages <=E12.5. Cells are colored by either theirinitial
annotations (top) or timepoint (bottom). e, The same UMAP asin panel d,
colored by gene expression of markers of retinal progenitor cells RPCs (Pax2 +,
Paxé6 +,Rax +, Fgf15+), RPE (Tyr +), and the optic stalk (Pax2 +, Vax1 +, Rax-).
References for marker genesare provided in Supplementary Table12. f, Rescaled
proportion of profiled cells (log2; y-axis) for each cell type shownin panel a, as
afunction of developmental time (x-axis). For rescaling, the % of profiled cells
inthe entire embryo assigned agivenannotation was multiplied by 100,000,
prior to taking thelog2. Line plotted with geom_smooth functionin ggplot2.

g, Schematic of retinal cell types emphasizing the timing at which they first
appear and theirinferred developmental relationships from E8-P0O, based on
manualreview of the trajectories. The gray lines indicate subsets of the eye
field and RPE subsequently annotated as the optic stalk (label 16) and iris
pigmentepithelium (label17), respectively. Cell types are positioned along the

x-axis atthe timepoint at which they are first observed (as shownin panel h).

h, The predicted absolute number (log2 scale) of cells of each retinal cell type
ateachtimepoint. The predicted absolute number was calculated by the
productofits sampling fractionin the overallembryo and the predicted total
number of cellsinthe whole embryo at the corresponding timepoint (Fig. 1b).
For eachrow, thefirst timepoint with at least 10 cells assigned that cell type
annotationis labeled, and all observations prior to that timepointare discarded.
i,Re-embedded 2D UMAP of asubset of cellsin panel a corresponding to eye
field, RPEand CMZ. Cells are colored by either their initial annotations (top) or
timepoint (bottom). j, Thesame UMAP asin panel i, colored by gene expression
of marker genes for IPE or pigment epithelium more generally (Tyr & Oca2).
RPE:retinal pigment epithelium. CMZ: ciliary marginal zone. RPCs: retinal
progenitor cells. IPE: iris pigment epithelium. References for marker genes are
providedinSupplementary Table12.k, Re-embedded 2D UMAP of retinal
ganglion cells. Cells are colored by either clusters (left; Leiden clustering
followed by downselection to late-appearing clusters) or timepoint (right).

1, The top 3 TF markers of the 15 clusters shown in panel k. Marker TFs were
identified using the FindAliIMarkers function of Seurat/v3®. Their mean gene
expressionvaluesineach clusterarerepresented inthe heatmap, calculated
fromoriginal UMI counts normalized to total UMIs per cell, followed by natural-
log transformation. The fulllist of significant TFsis provided in Supplementary
Table 14. m, Marker gene expression for different neuroectodermal territories.
Thesame UMAP asinFig.4a, colored by gene expression of marker genes for
eachneuroectodermalterritory. References for marker genes are providedin
Supplementary Table 5.
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Extended DataFig.10|Subtypes ofintermediate neuronal progenitors,
glutamatergic & GABAergic neurons, and early astrocytes, and the timing
ofneuronal subtype differentiation from the patterned neuroectoderm.
a,Re-embedded 2D UMAP of 628,251 cells within the intermediate neuronal
progenitors major cell cluster, colored by either cell type (top) or
developmental stage (bottom, after downsampling to a uniform number of
cells per time window). b, The same UMAP as in panel a, colored by gene
expression of marker genes which appear specific tointermediate neuronal
progenitors (Eomes +, Pax6 +), upper-layer neurons (Satb2 +, Pou3f2 +, Pou3f3+),
deep-layer neurons (Tbrl +, Bcl11b +, Fezf2 + ), or subplate neurons (Kcnabl +,
Chrnas +, Syt6 +, Foxp2 + ). References for marker genes are provided in
Supplementary Table 5. ¢, The same UMAP asin Fig. 4e, with cells colored by
timepoints. d, Left: Neuronal subtypes shown in Fig. 4e originate from anterior
vs. posterior of neuroectoderm, and then subsequently display inhibitory vs.
excitatory functions after differentiation. Right: The same UMAP asinFig. 4e,
colored by gene expression of marker genes which appear specific to anterior
(Otx2+)vs.posterior (Hoxb4 +, Hoxd4 + ) origins, or inhibitory (Slc32al +,

Gadl +)vs.excitatory (SlcI7a6 +) functions. References for marker genes are
providedinSupplementary Table12.e, 3D visualization of gene expression
variationinllspinalinterneurons, colored by cell type (left) or timepoint
(right).f, Correlations between top four PCs and timepoints (top row) or cell
types (bottom row). Boxplots (n=97,842 cells) represent IQR (25th, 50th, 75th
percentile) with whiskers representing1.5x IQR. Red triangles and green stars
highlight glutamatergic and GABAergic spinal cord interneurons, respectively.
g, Subtypesofearly astrocytes and theirinferred progenitors. Re-embedded
2D UMAP of 5,928 cells within the astrocytes from stages <E13. h, Composition
ofembryos fromeach 6-hr bin by different subpopulations of astrocytes.i, The
same UMAP asin panel g, colored by gene expression of marker genes which

appear specificto anterior (Otx2 +) or posterior (Hoxb4 +, Hoxd4 +, Hoxc6 +)
astrocytes, VAl-astrocytes (Pax6 +, Reln +), VA2-astrocytes (Pax6 +, Reln +,
Nkx6-1+,Slit1 +),and VA3-astrocytes (Nkx6-1 +, Slit1 +).References for marker
genesareprovidedin Supplementary Table12.j, The same UMAP of the
patterned neuroectodermasinFig.4a, withinferred progenitor cells of
astrocytes colored by the frequency that has beenidentified asa MNN with
either VA2-astrocytes (left) or VA3-astrocytes (right). k, For those three cell
types (cerebellar Purkinje cells, precerebellar neurons, spinal dl6 interneurons)
which were excluded from the analyses represented in Fig. 4g, h due to having
fewer than 50 MNN pairs, we performed arecursive mapping to identify
whether they might share progenitors with another derived cell type, essentially
repeating the analysis but attempting to map the earliest cells of these cell
typestoother derivative cell types rather than the patterned neuroectoderm.
The heatmap shows the number of MNN pairs between pairwise cell types.
Inbrief, this analysis suggests that spinal dI2 interneurons and cerebellar
astrocytes share progenitors, while the progenitors of the other twore-analyzed
celltypesremainambiguous.l, Gene expression across timepoints, for the
specific TF markers of spinal dl1 (left) or spinal dI5 (right) interneurons. m, Left:
gene expression for 18 selected TFs, across progenitor cells of dI1-5from the
neuroectodermal territories. Right: gene expression for 18 selected TFsacross
21time bins for dI1-5 spinal interneurons inwhich the TF has been nominated as
marker TF. For individual spinal interneurons (each row), the first time bin
involves the earliest 500 cells, then the left cells break into 20 bins ordered by
their timepoints and with the same number of cellsin each bin. Only cells from
stages<E13areincluded. n, Foreach neuronal subtypeinFig.4g, h, weselected
theannotationinthe patterned neuroectoderm to which the mostinferred
progenitors had been assigned, and plotted the distribution of timepoints for
thatsubset ofinferred progenitors.
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Extended DataFig.11|See next page for caption.
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Extended DataFig.11|Identifying equivalent cell type nodes across
datasets, and systematically nominating TFs and other genes for cell type
specification.a, The MNN approach used for graph constructionis robust to
subsampling and choice of the k parameter. The percentage of MNNs between
different cell types, from the same embryo (blue) or from different embryos
(red), is shown for each developmental system during organogenesis & fetal
development, for all cells (left), cells from E8.0 to E10.0 (middle), or cells from
E13.0to E13.75 (right). b, The Spearman correlation coefficients of the
normalized number of MNNs between cell types, comparing random
subsampling of 80% of the cells to the full set of cells. The subsampling was
repeated 100 times. The number of MNNs between cell types were normalized
by the total number of possible MNNs between them. Boxplot (n=1,200
correlation coefficients) represents IQR (25th, 50th, 75th percentile) with
whiskersrepresenting1.5x IQR. Outliers are shown as the dots outside the
whiskers. ¢, The Spearman correlation coefficients of the normalized number
of MNNs between cell types, comparing various choices for k parameter (k=5,
10,20,30,40,50) and the choice of k parameter (k =15) when applying kNN to
the developmental systems during organogenesis & fetal development. The
number of MNNs between cell types were normalized by the total number of
possible MNNs between them. Colors and numbers in panels a-c correspond to
each developmental systemannotations listed at the top right.d, 1,155 edges
with the number of normalized MNNs >1were manually reviewed for biological
plausibility. Histogram of edges that were accepted or rejected as a function of
normalized MNNscore. e, Integration of scRNA-seq profiles from gastrulation
and early somitogenesis toidentify equivalent cell type nodes across datasets
generated by distinct technologies. 2D UMAP visualization of co-embedded
cells, derived both froma gastrulation dataset based on cells fromE6.5to E8.5
generated on the 10x Genomics platform’ (n =108,857 cells) and the earliest -1%
of this dataset (0-12 somite stage embryos) generated by sci-RNA-seq3
(n=153,597 nuclei), after batch correction®, Thisis essentially an updated
version of an analysis that we have done previously®. We performed clustering
and cell type annotation on theintegrated co-embedding, as shown.f, The
same UMAP asin panel eis shown twice, with colors highlighting cells/nuclei
from Pijuan-Sala’s dataset’ (left) or early somitogenesis® (right). g, For cells
from the original Pijuan-Sala’s dataset’, we quantify and display the overlap
betweentheoriginal annotations and the new annotations shownin panele.
Foreachrow, the proportions of cells that are distributed across each column

aretransformed to z-score. h, For nuclei from the early somitogenesis
embryos®, we quantify and display the overlap between the original
annotations and the new annotations shownin panele. These mappings were
the basis for dataset equivalence edges between the “gastrulation” and 12
“organogenesis & fetal development” subsystems. For each row, the
proportions of cells thatare distributed across each column are transformed to
z-score. CLE: Caudal lateral epiblast. NMPs: Neuromesodermal progenitors.
i, AWaddington landscape cartoonillustrating how a cell type transition might
bebrokenintothree phases. j, Given adirectional edge between two nodes,
A~ B,weidentified the subset of cells within eachnode that were either MNNs
ofthe other cell type (inter-node; groups 2 & 3) or MNNs of those cells (intra-
node; groups1&4).1f A > B, this effectively models the transition as group
1->2-> 3> 4.k, Histograms of the number of edges inwhich TFs are
differentially expressed. The left histogram counts only genes when they are
differentially expressed across the early phase of an developmental
progression edge, while theright histogram counts genes when they are
differentially expressedinany phase of alledges. 1, Same as panel k, but for all
genesrather thanonly TFs. m, Re-embedded 2D UMAP of 988 cells
participatingingroups1-4 of the transition from anterior primitive streak -
definitiveendoderm. Cells are colored by either cell type annotations (top) or
estimated pseudotime (bottom) using Monocle3'.n, For cellsin panel m,
normalized gene expression of selected genes are plotted as a function of
estimated pseudotime. Gene expression values were calculated from original
UMI counts normalized to total UMIs per cell, followed by natural-log
transformation. The line of gene expression was plotted by the geom_smooth
functioninggplot2. We manually added an offset based on their expression at
pseudotime =0 to the y-axis forindividual genes. 0, Asub-graph of Fig. 5g,
including hematopoietic stem cells (Cd34 +) and 12 cell type nodes which
appear derived fromit. p, Re-embedded 2D UMAP of 37,750 cells from
hematopoietic stemcells (Cd34 +), colored by developmental stage (after
downsampling to auniform number of cells per stage). q, The same UMAP asin
panel p, but withinferred progenitor cells (the cells participating in the MNNs
thatsupportthe edges) colored by derivative cell type with the most frequent
MNN pairs.r, Thesame UMAP asin panel p, colored by gene expression of
selected top key TFs which were upregulated during the “early transition” for
eachderivative.
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Extended DataFig.12|Rapidshiftsintranscriptional stateoccurina
restricted subset of cell types upon birth, and differ between vaginally and
C-sectiondelivered pups. a, The number of nuclei profiled for each animal
showninFig. 6¢. Asmall number of nuclei from additional fetal samples from
the original set of experiments were also profiled for quality control (samples
10-12).b,2D UMAP visualization of the birth-series dataset (n = 962,697 cells).
Colors correspond to 26 major cell cluster annotations (Fig. 1b, c). Two major
cell clusters (the primitive erythroid and testis & adrenal major cell clusters)
showninthe original dataset but missed here are highlighted in gray. Primitive
erythroid cellsare not present at these timepoints and testis & adrenal cells are
collapsed to the epithelial cells major cell cluster due to their low numbers.
c,Re-embedded 2D UMAP 0f19,696 cells of the adipocyte major cell cluster.
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d,Re-embedded 2D UMAP of 7,986 cells of the lung & airway major cell cluster.
e, For these three major cell clusters, we co-embedded cells from three
vaginally delivered pups (samples1-3in Fig. 6¢) and six pups delivered by
C-section (samples 4-9 in Fig. 6¢), followed by subsetting a uniform number of
cellsper sample. For cells from each of the three vaginally delivered pups, we
calculated the number of their 10 nearest neighbors inthe PCAembedding
(n=30dimensions) from other samples. f, Re-embedded 2D UMAP of cells
fromthese three major cell clusters, based on cells from three vaginally
delivered pups and six pups delivered by C-section. For each row, the same
UMAP is shown multiple times, with colors highlighting cells from individual
pups (or two pups, inthe case of the 0-min C-section timepoint).
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data generated in this study can be downloaded in raw and processed forms from the NCBI Gene Expression Omnibus under accession number GSE186069 and
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GSE228590. The data are also available at https://omg.gs.washington.edu/, together with a browser that enables its visual exploration. The published datasets
analyzed for this study were retrieved from either the GEO repository (GSE44183, GSE100597, GSE109071), https://github.com/MarioniLab/
EmbryoTimecourse2018, or https://db.cngb.org/stomics/mosta/ and re-processed. Published ISH images were obtained from the MGl website (https://
www.informatics.jax.org/). Mouse reference genome (mm10) and gene annotations (GENCODE VM12) were used for read alignment and gene count matrix
generation.
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Life sciences study design
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Sample size No statistical methods were used to predetermine sample size.
Our previous study (Qiu et al., 2022), which profiled 154,313 cells from 12 mouse embryos at early somitogenesis stage, successfully
identified the same 30 cell types as those identified in E8.5 data by Pijuan-Sala et al. (2019). The extensive data, along with the separate
processing of individual somite-resolved embryos, enabled the detection of significant substructures, such as A-P floor plates and various
hindbrain segmentations. In this study, we applied the same technology to profile single nuclei from mouse embryos, identifying over 200
distinct cell types and focusing on several specific tissues and organs. This comprehensive analysis suggests that our sample size is adequate
for investigating cell states and developmental trajectories during mouse organogenesis. In addition, we experimentally quantified the total
DNA of staged embryos and estimated that the embryo grows 3,000-fold from E8.5 to PO. Therefore, despite the large number of nuclei
profiled, our cellular coverage remains limited, ranging from 0.5-fold for early stages (summing 6 embryos, somite counts 7-12) to 0.002-fold
immediately before birth (summing 6 embryos, E17.5-E18.75).

Data exclusions  When we took a first round of cell-embedding, we noticed that one mouse embryo at E14.5 had a grossly reduced proportion of neuronal
cells. This particular sample had been divided during pulverization, and we suspect that large portions of the frozen embryo did not make it
into the experiment. We removed cells from this E14.5 embryo.

Replication Firstly, we performed 15 sci-RNA-seq3 experiments, and the data from each experiment overlapped well, demonstrating high replicability. We
have employed various methods to confirm the data quality. Secondly, to validate our findings regarding posterior embryos, we generated an
independent validation dataset comprising somites 8-21, and the findings were validated. Thirdly, to validate our observations of abrupt
transcriptional changes before and after birth, we generated a new "birth-series" dataset, and the findings were validated. Finally, for the
spatial mapping analysis, we utilized publicly available ISH images to verify our cell-type annotations within the lateral plate mesoderm.

Randomization  From a total of 523 embryos staged at the Jackson Laboratory, we selected 75 for whole embryo scRNA-seq, targeting one embryo for every
somite count from O to 34 (2-hr increments), and one embryo for every 6-hr bin from E10 to PO. Embryos used in experiments were randomly

selected from each timepoint before sample preparation.

Blinding In this study, investigators were blinded to group allocation during sample collection and data generation/analysis: embryo collection and sci-
RNA-seq3 data generation/analysis were performed by different researchers in different locations.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq

Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 83 precisely staged C57BL/6NJ (strain# 005304) mice were obtained at The Jackson Laboratory. Mice of both sexes were included in
the study, with a roughly equal number of males and females.

Wild animals Study did not involve wild animals
Field-collected samples  Study did not involve field-collected samples
Ethics oversight All animal use at The Jackson Laboratory was done in accordance with the Animal Welfare Act and the AVMA Guidelines on

Euthanasia, in compliance with the ILAR Guide for Care and Use of Laboratory Animals, and with prior approval from The Jackson
Laboratory animal care and use committee (ACUC) under protocol AUS20028.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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