Genome Sciences 373
Genome Informatics

Quiz Section 2
April 7, 2015

Topics for today

Questions from lecture

Homework 1 due tomorrow S5pm
Homework 2 assigned tomorrow

Python overview: more data types

Questions about material from lecture

Can python lists have strings and
numbers mixed together?

What are some ways of writing a
newline to my program’s output?

How do | decide what scores to put
iIn my alignment scoring matrix?

More python for beginners:
comments, sets, dictionaries

Commenting for beginners

Your homework MUST HAVE
COMMENTS

It's OK to “over-comment”

Usually we put comments just above the
part of the program we're referring to

In-class example

Today: data types, flow control

Dictionaries
Sets
If/elif/else statements

The importance of indenting!

Useful data type: sets

« Sets usually get introduced “later on” when learning
to program

« But, they are VERY useful in bioinformatics! So
we’re jJumping ahead.

* A’set” in python implements the mathematical
concept of a set [In-class example]

>>> my_list = [1, 1, 2, 2, 3, 3]
>>> my_set = set(my_list)

>>> my_list

i, 1, 2, 2, 3, 3]

>>> my_set

set([1, 2, 3])

>>> I

Working with sets

* len(s) — cardinality or size of set s.

* X in s —test x for membership in s.

s.issubset(t) — test whether every elementin s is in t.

s.issuperset(t) — test whether every elementintisin s.

s.update(t) — Update set by adding all elements in t.

s.add(e) — Add e to set.

s.remove(e) — Remove e from set (or KeyError) compare:
s.discard(e) — Remove e from set if it exists.

s.clear() — Remove all items.

Working with sets: part 2

s | t — new set with elements from both s and t.
(a.k.a. “UNION”)

s & t — new set with elements common to s and t.
(a.k.a. INTERSECTION")

s -t — new set with elements in s but not in t

s Mt — new set with elements in either s or t but not both

0406 16:18 s020:~% python
Python 2.7.2 (default, Feb 28 2012, ©08:29:13)
[GCC 4.4.6 20110731 (Red Hat 4.4.6-3)] on linux2
Type “"help"”, "copyright", “"credits" or "license" for more information.
>>> odds = set([1,3,5,7,9])
>>> evens = set([2,4,6,8,10])
>>> primes = set([2,3,5,7])
>>>
>>> print odds & primes
set([3, 5, 7D
>>> print evens & primes
set([2])
>>> print odds & evens
set([1)
>>> print odds + evens
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'set' and 'set’
>>> print odds | evens
set([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> |}

In class example:

State names

Dictionaries: pretty much what it sounds like

Like a printed dictionary L2 S
i

maps words to definitions, REESSSNE

avea of Yand tnayy,
. :mv‘,&'\ed of waker, WYy

. 1. N\ong .
\ANE O, K
a, \"2\%\1\\\\; rounded, |

Python dictionaries map
keys to associated values G

You can quickly “look up”
the “value” associated with
a “key”

Download from
Dreamstime.com

>>> capitals = {}

>>> capitals["WA”"] = “Olympia”
>>> capitals[*ID"] = “Boise”
>>> capitals[*AK"] = “Juneau”

Working with dictionaries

0406 21:32 iris:~% python
Python 2.7.6 (default, Sep 9 2014, 15:04:36)
[GCC 4.2.1 Compatible Apple LLWM 6.0 (clang-600.0.39)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> capitals = { }
>>> capitals["WA"] = "Olympia"
>>> capitals["ID"] = "Boise"
>>> capitals["AK"] = "Juneau"
>>> capitals
{'AK': '"Juneau', 'ID': 'Boise', 'WA': 'Olympia'} <€— note: “random” order
>>> capitals["ID"]
'Boise’
>>> capitals["IE"]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'IE'
>>> for state, city in capitals.items():

print "The capital of", state, "is", city

The capital of AK is Juneau
The capital of ID is Boise
The capital of WA is Olympia
>>> I

Working with dictionaries, part 2

my_dict.get(k, default) — returns the value associated with k,
or default if key k does not exist

my_dict.items() — returns all key: value pairs as an iterator
my_dict.keys() — returns all keys in the dictionary (in “random” order)
my_dict.values() — returns all values in the dictionary (“random”)

Values can be anything, even other dictionaries!

<In class example>

Python flow control: if / elif / else

num = int(sys.argv[1])

If num > 0:

print “input is greater than zero”
elif num < 0

print “input is less than zero”
else:

print “input must be zero!”

The order of these MUST be if - elif, 2 else

But you only need “if” — the others are optional

Python flow control: if / elif / else

num = int(sys.argv[1])

If num == 1:
print “input is exactly 1”
elif num == 2:
print “input is exactly 2”
elif num == 3:
print “input is exactly 3"
elif num==4:1[..]
else:
print “input didn’t match anything | wanted!”

Doing more than one thing

num = int(sys.argv[1])

If num == 1:
print “input is exactly 1”
prime = False
even = False
elif num == 2:
print “input is exactly 2”
prime = True
even = True
else:
print “didn'tgeta 1 ora 2”

Doing more than one thing

num = int(sys.argv[1])

If num == 1:
print “input is exactly 1”
prime = False
even = False
elif num == 2:
print “input is exactly 2”
prime = True
even = True
else:
print “didn'tgeta 1 ora 2”

a “block” of code
- defined by having

the same indenting

= another block

For loops: iterating over groups of things

Often you want to do something to every element of a group:
« Check every number to see if it's less than some value
* Read the second column in every line of input

* Look at every key: value pair in a dictionary

>>>
>>>

my_list = [1, 2, 3, 4]
for temporary_name in my_list:
print temporary_name * 2

temporary_name

for temporary_name in my_list:
print temporary_name * 2

Lists

Strings

>>> my_string = "ACGTA"
>>> for my_character in my_string:
- print my_character.lower()

>>>

>>> my_dict = {"'geneA’': 4500, 'geneB': 5000, 'geneC': 2000}

>>> my_dict
{'geneA’': 4500, 'geneB': 5000, 'geneC': 2000}
>>> current_max = 0
>>> top_gene_name =

>>> for g, v in my_dict.items(): I
if v > current_max:
current_max = v
top_gene_name = g

——

>>>
>>> []

Note: three layers of
indentation!

>>>

>>> my_dict = {"geneA’': 4500, 'geneB’': 5000, 'gene(C': 2000}

>>> my_dict

{'geneA’': 4500, 'geneB': 5000, 'geneC’': 2000}

>>> current_max = 0

>>> top_gene_name =

>>> for g, v in my_dict.items():

if v > current_max:

current_max = v
top_gene_name = g

>>>
. >>> I

What is the value of current._max ?

What is the value of top _gene name?

Comparison operators: comparing values

Boolean: and, or, not
Numeric: <, >, ==5, 15, >=, <=

String: in, not in

< Isless than Beware!
> is greater than = Vs, ==
==is equal to

I=is NOT equal to
<=is less than or equal to
>=|s greater than or equal to

Comparison operators: examples

>>> seq = 'CAGGT'

>>> if ('C' == seq[0]):
print 'C 1s first in', seq

C is first in CAGGT

>>> 1f ('CA' 1in seq):

. print 'CA is found in', seq

CA is found in CAGGT

>>> 1f (('CA' 1n seq) and ('CG' 1in seq)):
print "Both there!”

>>>

