
Genome	
 Sciences	
 373	

Genome	
 Informa1cs	
 	

Quiz	
 Sec1on	
 2	

April	
 7,	
 2015	

Topics for today

Questions from lecture

Homework 1 due tomorrow 5pm
Homework 2 assigned tomorrow

Python overview: more data types

Questions about material from lecture

Can python lists have strings and
numbers mixed together?

What are some ways of writing a
newline to my program’s output?

How do I decide what scores to put
in my alignment scoring matrix?

More	
 python	
 for	
 beginners:	

comments,	
 sets,	
 dic1onaries	

Commenting for beginners

Your homework MUST HAVE
COMMENTS

It’s OK to “over-comment”

Usually we put comments just above the
part of the program we’re referring to

In-class example

Today: data types, flow control

Dictionaries

Sets

If/elif/else statements

The importance of indenting!

Useful data type: sets

•  Sets usually get introduced “later on” when learning
to program

•  But, they are VERY useful in bioinformatics! So
we’re jumping ahead.

•  A “set” in python implements the mathematical
concept of a set [In-class example]

•  len(s) – cardinality or size of set s.

•  x in s – test x for membership in s.

•  s.issubset(t) – test whether every element in s is in t.

•  s.issuperset(t) – test whether every element in t is in s.

•  s.update(t) – Update set by adding all elements in t.

•  s.add(e) – Add e to set.

•  s.remove(e) – Remove e from set (or KeyError) compare:
•  s.discard(e) – Remove e from set if it exists.

•  s.clear() – Remove all items.

Working with sets

•  s | t – new set with elements from both s and t.
(a.k.a. “UNION”)

•  s & t – new set with elements common to s and t.
(a.k.a. “INTERSECTION”)

•  s - t – new set with elements in s but not in t

•  s ^ t – new set with elements in either s or t but not both

Working with sets: part 2

In class example:

State names

Dictionaries: pretty much what it sounds like

Like a printed dictionary
maps words to definitions,

Python dictionaries map
keys to associated values

You can quickly “look up”
the “value” associated with
a “key”

>>> capitals = { }
>>> capitals[“WA”] = “Olympia”
>>> capitals[“ID”] = “Boise”
>>> capitals[“AK”] = “Juneau”

Working with dictionaries

note:	
 “random”	
 order	

Working with dictionaries, part 2

my_dict.get(k, default) – returns the value associated with k,
 or default if key k does not exist

my_dict.items() – returns all key: value pairs as an iterator

my_dict.keys() – returns all keys in the dictionary (in “random” order)

my_dict.values() – returns all values in the dictionary (“random”)

Values can be anything, even other dictionaries!

<In class example>

Python flow control: if / elif / else

num = int(sys.argv[1])

if num > 0:

 print “input is greater than zero”
elif num < 0:

 print “input is less than zero”
else:

 print “input must be zero!”

The order of these MUST be if à elifn à else

But you only need “if” – the others are optional

Python flow control: if / elif / else

num = int(sys.argv[1])

if num == 1:

 print “input is exactly 1”
elif num == 2:

 print “input is exactly 2”
elif num == 3:

 print “input is exactly 3”
elif num == 4: […]
else:

 print “input didn’t match anything I wanted!”

Doing more than one thing

num = int(sys.argv[1])

if num == 1:

 print “input is exactly 1”
 prime = False
 even = False

elif num == 2:
 print “input is exactly 2”
 prime = True
 even = True

else:
 print “didn’t get a 1 or a 2”

Doing more than one thing

num = int(sys.argv[1])

if num == 1:

 print “input is exactly 1”
 prime = False
 even = False

elif num == 2:
 print “input is exactly 2”
 prime = True
 even = True

else:
 print “didn’t get a 1 or a 2”

a “block” of code
defined by having
the same indenting

another block

For loops: iterating over groups of things

Often you want to do something to every element of a group:

•  Check every number to see if it’s less than some value

•  Read the second column in every line of input

•  Look at every key: value pair in a dictionary

Strings

Lists

Note:	
 three	
 layers	
 of	

indenta1on!	

What is the value of current_max ?

What is the value of top_gene_name?

Boolean: and, or, not

Numeric: < , > , ==, !=, >=, <=

String: in, not in

< is less than
> is greater than
== is equal to
!= is NOT equal to
<= is less than or equal to
>= is greater than or equal to

Comparison operators: comparing values

Beware!
= vs. ==

>>> seq = 'CAGGT'
>>> if ('C' == seq[0]):
... print 'C is first in', seq
C is first in CAGGT
>>> if ('CA' in seq):
... print 'CA is found in', seq
CA is found in CAGGT
>>> if (('CA' in seq) and ('CG' in seq)):
... print "Both there!“
>>>

Comparison operators: examples

