
Genome	
 Sciences	
 373	

Genome	
 Informa1cs	
 	

Quiz	
 Sec1on	
 3	

April	
 14,	
 2015	

Reminder:	

	
 	

Office	
 hours	
 Monday	
 2-­‐3pm	

Foege	
 S-­‐110	

Topics for today

Questions from lecture

Homework 2 due tomorrow 5pm
Homework 3 assigned tomorrow

Python overview: dictionaries, loops

Python dictionaries: in-class example

How can I count the repeating characters in a string?

my_dictionary = { }
my_string = “ACGATA”

for my_base in my_string:

 if

 else

Python dictionaries: in-class example

How can I count the repeating characters in a string?

my_dictionary = { }
my_string = “ACGATA”

for my_base in my_string:

 if

 else

Python dictionaries: in-class example

How can I iterate through all entries in a dictionary?

print out only the characters there more than once
for my_key, my_value in my_dictionary.items():

 if my_value > 1:
 print “saw key %s more than once” % my_key

an alternative way
for my_key in my_dictionary.keys():

 if my_dictionary[my_key] > 1:
 print “saw key %s more than once” % my_key

if (<test evaluates to true>):
<execute this>
<block of code>  

elif (<different test evaluates to true>):
<execute that>
<block of code>

VS

if (<test evaluates to true>):
<execute this>
<block of code>  

if (<different test evaluates to true>):
<execute that>
<block of code>

Python if/elif/else: are these different?

assign some numbers for testing
x=1  
y=2  
z=3  

test if two statements are BOTH true
if (z > x) and (z!=y):

<do something>

test if one or both statements is/are true
if (x*x + y == z) or (y<=z):

<do something>

Python if/elif/else: combining tests

and both conditions are true
or either or both conditions are true
not negation

X in Y is X substring/sublist of Y?
X not in Y negation of above
< is less than
> is greater than
== is equal to
!= is NOT equal to
<= is less than or equal to
>= is greater than or equal to

Python comparison operators

if (<test evaluates to true>):
<execute this>
<block of code>

<The program continues with>
<this block of code>

Python if/elif/else

if (<test evaluates to true>):
<execute this>
<block of code>

elif (<different test evaluates to true>):
<execute this different>
<block of code>

<The program continues with>
<this block of code>

Python if/elif/else

if (<test evaluates to true>):
<execute this>
<block of code>

elif (<different test evaluates to true>):
<execute this different>
<block of code>

elif (<third test evaluates to true>):
<execute this third>
<block of code>

<The program continues with>
<this block of code>

Python if/elif/else

if (<test evaluates to true>):
<execute this>
<block of code>

elif (<different test evaluates to true>):
<execute this different>
<block of code>

elif (<third test evaluates to true>):
<execute this third>
<block of code>

else:
<all tests failed, so execute this>
<block of code>

Python if/elif/else

assign some numbers for testing
x=1  
y=2  
z=3  

test if two statements are BOTH true
if (z > x) and (z!=y):

<do something>

test if one or both statements is/are true
if (x*x + y == z) or (y<=z):

<do something>

Evaluation goes from left to right following rules of precedence
Math > [In]Equality > and/or/not

Use () to group things for ease of reading/debugging	

Python if/elif/else: combining tests

Python loops: for loops

For	
 loops	
 allow	
 you	
 to	
 perform	
 an	
 opera1on	
 on	
 each	
 element	

in	
 a	
 list	
 (or	
 character	
 in	
 a	
 string)	
 	

for <element> in <object>:

<execute this>
<block of code>  

<The program continues> #loop ended
<with this block of code>

Python loops: for loops on strings

For	
 loops	
 allow	
 you	
 to	
 perform	
 an	
 opera1on	
 on	
 each	
 element	

in	
 a	
 list	
 (or	
 character	
 in	
 a	
 string)	
 	

for <element> in <object>:

<execute this>
<block of code>  

<The program continues> #loop ended
<with this block of code>

Total_A=0
for my_character in “ACTTG”:

if my_character == “A”:
Total_A = Total_A + 1

now my loop is done
print “I saw %d A’s in my string” % Total_A

Python loops: for loops on strings

For	
 loops	
 allow	
 you	
 to	
 perform	
 an	
 opera1on	
 on	
 each	
 element	

in	
 a	
 list	
 (or	
 character	
 in	
 a	
 string)	
 	

for <element> in <object>:

<execute this>
<block of code>  

<The program continues> #loop ended
<with this block of code>

Total_A=0
for my_character in “ACTTG”:

if my_character == “A”:
Total_A = Total_A + 1

now my loop is done
print “I saw %d A’s in my string” % Total_A

Each time through the loop,
the value of my_character
gets automatically updated

for my_character in “ACGAT”:
<execute this>

<The program continues> #loop ended

Python for loops: getting out of the loop

Example code:

At the end, all characters will have been visited.
What if I want to stop if I see a G?

for my_character in “ACGAT”:
if my_character == “G”:

break
<The program continues> #loop ended

for my_character in “ACGAT”:
<execute this>

<The program continues> #loop ended

Python for loops: skipping in a loop

Example code:

At the end, all characters will have been visited.
What if I want to skip all G’s?

for my_character in “ACGAT”:
if my_character == “G”:

continue
<do something to all non-G characters>

<The program continues> #loop ended

“continue” means: keep going with the loop, just skip
this particular element. “break” means: stop the loop.

>>> for animal in ['cat','human','spider']:
... print animal  
...  
cat
human
spider
>>>

Python for loops: looping on a list

Example code:

>>> for animal in ['cat','human','spider']:
... print animal  
...  
cat
human
spider
>>>

Python for loops: looping on a list

Example code:

Iteration 1

>>> for animal in ['cat','human','spider']:
... print animal  
...  
cat
human
spider
>>>

Python for loops: looping on a list

Example code:

Iteration 2

>>> for animal in ['cat','human','spider']:
... print animal  
...  
cat
human
spider
>>>

Python for loops: looping on a list

Example code:

Iteration 3 – and finished

Python for loops: handle a “matrix”

>>> matrix = [[12, 25], [0.3, 2.1], [-3, -1.8]]
>>> for my_row in range(0, 3): # [0,1,2]
... print 'row=', my_row
... for my_column in range(0, 2): # [0,1]
... print matrix[row][column]  
...

Python for loops: handle a “matrix”

>>> matrix = [[12, 25], [0.3, 2.1], [-3, -1.8]]
>>> for my_row in range(0, 3): # [0,1,2]
... print 'row=', my_row
... for my_column in range(0, 2): # [0,1]
... print matrix[row][column]  
...

row= 0
12
25
row= 1
0.3
2.1
row= 2
-3
-1.8

Python for loops: handle a “matrix”

>>> matrix = [[12, 25], [0.3, 2.1], [-3, -1.8]]
>>> for my_row in range(0, 3): # [0,1,2]
... print 'row=', my_row
... for my_column in range(0, 2): # [0,1]
... print matrix[row][column]  
...

row= 0
12
25
row= 1
0.3
2.1
row= 2
-3
-1.8

Python for loops: handle a “matrix”

>>> matrix = [[12, 25], [0.3, 2.1], [-3, -1.8]]
>>> for my_row in range(0, 3): # [0,1,2]
... print 'row=', my_row
... for my_column in range(0, 2): # [0,1]
... print matrix[row][column]  
...

row= 0
12
25
row= 1
0.3
2.1
row= 2
-3
-1.8

Python for loops: handle a “matrix”

>>> matrix = [[12, 25], [0.3, 2.1], [-3, -1.8]]
>>> for my_row in range(0, 3): # [0,1,2]
... print 'row=', my_row
... for my_column in range(0, 2): # [0,1]
... print matrix[row][column]  
...

row= 0
12
25
row= 1
0.3
2.1
row= 2
-3
-1.8

Python for loops: handle a “matrix”

>>> matrix = [[12, 25], [0.3, 2.1], [-3, -1.8]]
>>> for my_row in range(0, 3): # [0,1,2]
... print 'row=', my_row
... for my_column in range(0, 2): # [0,1]
... print matrix[row][column]  
...

row= 0
12
25
row= 1
0.3
2.1
row= 2
-3
-1.8

i = 0
while i < 5:

print “i is still less than 5!”
i += 1

<The program continues> #loop ended

Python while loops

Example code:

Note that I did not have to explicitly exit the loop.

my_gene_file = open(“my_genes.txt”, “r”)

total = 0
startsWithA = 0
while total < 100:

total = total + 1
line = my_gene_file.readline()
if line.startswith(“A”):

startsWithA = startsWithA + 1

print “I have %d of 100 genes starting with A” % startsWithA
<The program continues> #loop ended

Python while loops

Example code:

my_gene_file = open(“my_genes.txt”, “r”)

total = 0
startsWithA = 0
while total < 100:

total = total + 1
line = my_gene_file.readline()
if line.startswith(“A”):

startsWithA = startsWithA + 1
if startsWithA >=10:

print “Breaking out of the loop!”
break

print “I have %d of 100 genes starting with A” % startsWithA
<The program continues> #loop ended

Python while loops

Example code:

I can break out of
while loops too!

Python while loops vs for loops: summary

for loops visit every element in a collection (list, string, etc)
•  they exit automatically
•  skip with “continue”, break out with “break”

while loops keep going forever until the test is false
•  make sure your loop will eventually end before you run!
•  break out with “break”

How to make a sequential list of numbers
Common problem:
You want a list of numbers from a to b

Solution: range()
range(start, stop, step)

Example:
>>> range(4, 10, 1)
[4, 5, 6, 7, 8, 9]

>>> range(4, 10, 2)
[4, 6, 8]

>>> range(4, 10)
[4, 5, 6, 7, 8, 9]

The last argument (step) is optional!
It defaults to 1.

start: first number (inclusive)
stop: last number (exclusive)
step: how big is the jump?

How to make a sequential list of numbers
Example:

>>> for i in range(1, 4, 1):
... print i
... print i * i
...
1
1
2
4
3
9
>>>

How to make a sequential list of numbers
Example:

>>> for i in range(1, 4, 1):
... print i
... print i * i
...
1
1
2
4
3
9
>>>

How to make a sequential list of numbers
Example:

>>> for i in range(1, 4, 1):
... print i
... print i * i
...
1
1
2
4
3
9
>>>

How to make a sequential list of numbers
Example:

>>> for i in range(1, 4, 1):
... print i
... print i * i
...
1
1
2
4
3
9
>>>

Nested loops: loops inside loops
Example:

>>> for i in range(1, 4, 1):
... for j in range(5, 7, 1):
... print "i is", i, "and j is", j
...
i is 1 and j is 5
i is 1 and j is 6
i is 2 and j is 5
i is 2 and j is 6
i is 3 and j is 5
i is 3 and j is 6
>>>

Nested loops: loops inside loops
Example:

>>> my_ex = [[1,2], [3,4], [5,6]]
>>> for my_small_list in my_ex:
... print my_small_list
... for my_number in my_small_list:
... print my_number

What output should we see here?

In-class example: reading a matrix

