Genome Sciences 373
Genome Informatics

Quiz Section 5
April 28, 2015

Bonferroni corrections

The motivation is to minimize the

probability of a single false-positive test
(Type | Error)

We often define alpha = 0.05

== 5% chance we reject the null
hypothesis even when it's true

Bonferroni corrections

The motivation is to minimize the probability
of a single false-positive test
(Type | Error)

We often define alpha = 0.05

== 5% chance we reject the null
hypothesis even when it's true

The more tests we do, the probability
grows quickly!

Bonferroni corrections

Bonferroni is very conservative — we will
lose some “true signal” in order to not have
false-positives

Bonferroni corrections

Input: list of p-values and alpha for one test
Output: list of p-values below a corrected

threshold of significance

Procedure:

- Count ALL of the p-values

- Divide alpha by the total count

- Output each p-value if it is less than new_alpha

Some python caveats

You have two sequences (s1, s2)

You want to look for a gap (*-”) in the
alignment.

for index in range(len(sl)):
1f sl[index] or s2[index] == “-=":
print “found a gap!”

2727

Some python caveats

You have two sequences (s1, s2)

€k n

You want to look for a gap (*-”) in the
alignment.

for 1 ' n S
if s indegi or s2[1n ex] u_rs

Some python caveats

You have two sequences (s1, s2)

You want to look for a gap (*-”) in the
alignment.

for index in range(len(sl)):
1f sl[index] == “-" or s2[index] == *“-=";:
print “found a gap!”

Another python caveat

You are reading two sequences (s1, s2)
from an alignment file

You want to check each position of the
alignment for some condition

my open file = open(sys.argv[l])
sl = my open file.readline()
s2 = my open file.readline()

for index in range(len(sl)):
1f sl[index] == s2[1index]:
number of matches += 1

Another python caveat

You are reading two sequences (s1, s2)
from an alignment file

You want to check each position of the
alignment for some condition

my open file = open(sys.argv[l])
sl = my open file.readline()
S2 = myWwWpon U lwp. qpadline (¢

for index n Janseldersi)
1f sl[index] == s2[1index]:
number of matches += 1

Another python caveat

You are reading two sequences (s1, s2)
from an alignment file

You want to check each position of the
alignment for some condition

my open_file = open(sys.argv[l])
sl = my open file.readline().strip()
s2 = my open file.readline().strip()

for index in range(len(sl)):
1f sl[index] == s2[1index]:
number of matches += 1

Functions in Python: a brief overview

Functions are:
reusable pieces of code, that
take zero or more arguments,
perform some actions, and
return one or more values

Functions in Python: a brief overview

Functions are:
reusable pieces of code, that
take zero or more arguments,
perform some actions, and
return one or more values

conceptually

function “sum”
takes arguments a, b
addsaandb

returns sum

Functions in Python: a brief overview

Functions are:
reusable pieces of code, that
take zero or more arguments,
perform some actions, and
return one or more values

conceptually in python...
function “sum” def sum(a, b):
takes arguments a, b total=a+Db
addsaandb return total

returns sum
later in the program
my_sum = sum(2, 5)
my sumis now 7

Functions in Python: a brief overview

Functions are:
reusable pieces of code, that
take zero or more arguments,
perform some actions, and
return one or more values

in python...

def sum(a, b):

stuff that happens in { total=a +b
here is invisible outside return total

of the function

later in the program
my_sum = sum(2, 5)
print total # this won’t work!

def jc(seql, seq2):
find the length of the alignment

seqlength = len(seql) function to find

Jukes-Cantor
distance

counters
informative_pos = 0
mismatch_pos = 0

progress through the sequence
for index in range(seqlength):
ignore gaps
if seql[index] == "-" or seqZ[index] == "-":
continue
look for mismatches
if seql[index] != seq2[index]:
mismatch_pos += 1
increment the counter of informative positions
informative_pos += 1

find the raw distance: number of mismatches divided by the number
of informative positions
raw_distance = float(mismatch_pos) / float(informative_pos)

calculate the Jukes-Cantor distance from the raw distance
jc_distance = -0.75 * math.log(1.0 - (4.0/3.0 * raw_distance))
return jc_distance

In-class example:

Write a function to
calculate the factorial
of an integer

