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Multiplex, single-cell CRISPRa screening for
cell type specific regulatory elements

Florence M. Chardon 1,2,10, Troy A. McDiarmid1,2,10, Nicholas F. Page3,4,5,
Riza M. Daza 1,2, Beth K. Martin1,2, Silvia Domcke1, Samuel G. Regalado1,
Jean-Benoît Lalanne1, Diego Calderon 1, Xiaoyi Li1,2, Lea M. Starita 1,6,
Stephan J. Sanders3,5,7, Nadav Ahituv 4,5 & Jay Shendure 1,2,6,8,9

CRISPR-based gene activation (CRISPRa) is a strategy for upregulating gene
expression by targeting promoters or enhancers in a tissue/cell-type specific
manner. Here, we describe an experimental framework that combines highly
multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to
identify cell-type-specific, CRISPRa-responsive cis-regulatory elements and the
gene(s) they regulate. Random combinations of many gRNAs are introduced
to each of many cells, which are then profiled and partitioned into test and
control groups to test for effect(s) ofCRISPRaperturbations of both enhancers
and promoters on the expression of neighboring genes. Applying this method
to a library of 493 gRNAs targeting candidate cis-regulatory elements in both
K562 cells and iPSC-derived excitatory neurons, we identify gRNAs capable of
specifically upregulating intended target genes and no other neighboring
genes within 1Mb, including gRNAs yielding upregulation of six autism spec-
trum disorder (ASD) and neurodevelopmental disorder (NDD) risk genes in
neurons. A consistent pattern is that the responsiveness of individual enhan-
cers to CRISPRa is restricted by cell type, implying a dependency on either
chromatin landscape and/or additional trans-acting factors for successful gene
activation. The approach outlined here may facilitate large-scale screens for
gRNAs that activate genes in a cell type-specific manner.

There are millions of candidate cis-regulatory elements (cCREs) in the
human genome, yet only a handful have been functionally validated
and confidently linked to their target gene(s)1. Recently, we and others
have combined CRISPR-interference (CRISPRi) and sc-RNA-seq to
scalably validate distal cCREs, while also linking them to the gene(s)
that they regulate1–4. However, to date, the vast majority of work in the
field has focused on screening candidate regulatory elements for

necessity, with only a few studies screening for sufficiency in the
endogenous context.

CRISPR-activation (CRISPRa) is a versatile approach that allows
one to test for the sufficiency of cCRE activity5–8. CRISPRa screens of
noncoding regulatory elements have at least four potential advantages
over CRISPRi screens. First, as noted above, CRISPRa can identify
cCREs that are sufficient even if not singularly necessary to drive target
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gene expression. Second, CRISPRa can identify elements that, when
targeted, may upregulate already active genes above their baseline
levels. Third, CRISPRa has the potential to discover inactive regions
that, when transcriptional activation machinery is recruited to them,
can act as active enhancers and increase expression of nearby genes9.
Finally, CRISPRa has the potential to identify cCRE-targeting gRNAs
whose activity is cell type-specific, opening the door to “cis regulatory
therapy” (CRT) for haploinsufficient and other low-dosage associated
disorders, as recently demonstrated for monogenic forms of obesity
and autism spectrum disorder10,11. However, despite these potential
advantages, CRISPRa targeting of noncoding regulatory elements has
mostly been deployed in an ad hoc manner9,12–14, meaning typically
focusing on a single target gene, and furthermore in workhorse cancer
cell lines rather than more physiologically relevant in vitro models.

Here, we present a scalable framework in which we introduce
multiple, random combinations of CRISPRa perturbations to each of
many cells followed by sc-RNA-seq (Fig. 1), analogous to an approach
that we previously developed for CRISPRi screening2,4. Computational
partitioning of cells into test and control groups based on detected
gRNAs enables greater power than single-plex CRISPRa screens, as any
given single-cell transcriptome is informative with respect to multiple
perturbations2. In this proof-of-concept study, we performed two
screens in which the same set of cCREs was targeted, first in K562 cells
and then in human iPSC-derived excitatory neurons.We discover both
enhancer and promoter-targeting gRNAs capable of mediating upre-
gulation of target gene(s). For enhancers in particular, the upregula-
tory potential of individual gRNAs was consistently restricted to one
cell type, implying a dependency on either the cis chromatin landscape
and/or additional trans-acting factors for successful gene activation.

Results
Multiplex single-cell CRISPRa screening of regulatory elements
in K562 cells
As a proof of principle, we first sought to implement multiplex single-
cell CRISPRa screening in the chronic myelogenous leukemia cell line
K562, an ENCODE Tier 1 cell line15 in which we had previously per-
formed a multiplex CRISPRi screen2. Our proof-of-concept library
included gRNAs targeting transcription start site (TSS) positive

controls (30 gRNAs), candidate promoters (313 gRNAs), candidate
enhancers (100 gRNAs) and non-targeting controls (NTCs; 50 gRNAs).
The 30 TSS positive control gRNAs were selected from a previously
reported hCRISPRa-v2 library16, while the 313 candidate promoter-
targeting gRNAs were designed to 50 annotated TSSs of 9 high-
confidence haploinsufficient risk genes associated with ASD and NDD
(BCL11A, TCF4, ANK2, CHD8, TBR1, SCN2A, SYNGAP1, FOXP1, and
SHANK3)17. Genes for which haploinsufficient (i.e. dominant, loss-of-
function) variants appeared to be primary drivers of risk were prior-
itized. Further prioritization was based on gene cDNA size being too
large to fit into traditional gene therapy vectors. The candidate
enhancer-targeting guides included 50gRNAs designed to target 25
enhancer hits previously validated by CRISPRi2, as well as 50 gRNAs
designed to target 25 enhancer “non-hits” (i.e. sequences with bio-
chemicalmarkers strongly predictive of enhancer activity in K562 cells
that did not alter gene expression when targeted with CRISPRi2)
(Supplementary Fig. 1a, b; “Methods”). We cloned this gRNA library
(n = 493) into piggyFlex, a piggyBac transposon-based gRNA expres-
sion vector, to allow for genomic integration and stable expression of
gRNAs18. The piggyFlex vector has both antibiotic (puromycin) and
fluorophore (GFP) markers, enabling flexibly stringent selection for
cellswith higher numbersof gRNA integrants. Transposon vectors also
avoid issues that can arise due to recombination during viral
packaging19 and associated safety concerns. Additionally, this vector
design allows for gRNA transcript capture during single-cell library
preparation18 (Supplementary Fig. 1c).

There is no consensus on which CRISPRa activation complex is
best suited for broad and scalable targeting of enhancers13. We there-
fore tested both the VP64 activation complex, which consists of four
copies of the VP16 effector, and the VPR activation complex, which
consists of the VP64 effector fused to the p65 and Rta effectors20,21. We
generated a monoclonal, stably VP64-expressing K562 cell line, pur-
chased a polyclonal, stably VPR-expressing K562 cell line (Fig. 2a;
“Methods”), and validated the capacity of these lines for CRISPRa with
a minimal cytomegalovirus (CMV) promoter-tdTomato reporter
expression assay22 (Supplementary Fig. 2).

We then transfected the gRNA library and piggyBac transposase
into each cell line at a 20:1 library-to-transposase ratio to achieve high
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Fig. 1 | Multiplex, single cell CRISPRa screening for cell type-specific regulatory
elements. (Left) A library of gRNAs targeting candidate cis-regulatory elements
(cCREs) is introduced in a multiplex fashion to a population of cells expressing
CRISPRamachinery, such that each cell contains a randomcombinationofmultiple
CRISPRa-mediated perturbations. (Middle) Following single cell transcriptional
profiling and gRNA assignment, cells are systematically computationally

partitioned into those with or without a given gRNA and tested for upregulation of
neighboring genes. (Right) CRISPRa perturbations can either result in target-
specific upregulation, no detectable effect (e.g., for non-targeting controls) or, at
least theoretically, broad cis-upregulation of multiple genes in the vicinity of the
gRNA/CRISPRa machinery. Furthermore, patterns of upregulation can either be
general or cell type-specific.
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Fig. 2 | Multiplex single cell CRISPRa screening of regulatory elements in
K562 cells. a Screen workflow. b gRNAs/cell. c Cells/gRNA. d Quantile-quantile
plot showing distribution of expected vs. observed P-values for targeting
(blue) and non-targeting (gray, downsampled) differential expression tests. P-
values are from a two-tailed Wilcoxon rank-sum test. e (Top) Average log2 fold
change in expression between cells with each targeting gRNA vs. controls for
each of the primary/programmed target genes. Tests are sorted left-to-right
by increasing log2 fold change. (Bottom) Categorical heatmap showing which
of the perturbations drove significant upregulation using an Empirical FDR
approach (EFDR < 0.1). f Targeting gRNAs yielding significant upregulation are
enriched for proximity to their target gene. We observe no such enrichment
for NTCs tested for associations with target genes randomly selected from the
same set. g Average log2 fold change between cells with a given gRNA and
controls for select hit gRNAs. Number of cells bearing each targeting gRNA
(from left to right): CCND2 (n = 73), GNB2 (n = 220), FOXP1 (n = 313), ANK2

(n = 403), BCL11A (n = 191), TSPAN5 (n = 48), TMSB4X (n = 260), ANXA1 (n = 166),
ANXA1 (n = 128). Control cells are downsampled to have the same number of
cells as the average number of cells detected per gRNA (n = 178) for visuali-
zation. Normalized expression values represent log normalized expression
values from Seurat. Only cells with at least 1 target gene UMI are plotted. Note
that some genes (e.g., ANK2) are typically not detected as expressed in this cell
context, resulting in zero UMIs detected and thus no expression distribution
plotted in downsampled control cell populations. P-values as in panel (d, h)
Hits included multiple gRNAs targeting isoform-specific promoters of CHD8.
P-values are visualized alongside tracks for K562 ATAC-seq (ENCODE),
H3K27ac signal (ENCODE), and RefSeq validated transcripts (ENSEMBL/NCBI).
P-values as in panel d EFDR sets as in panel (e). i The strongest hit gRNAs for
ANK2 target the same promoter that is not prioritized by biochemical marks
(e.g., accessibility or H3K27ac). Genomic tracks, P-values, and EFDR sets as in
panel h Abbreviations: NTC non-targeting controls.
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multiplicity of integration (MOI), and selected cells with puromycin.
Cells were cultured for nine days before harvesting for sc-RNA-seq to
capture and assign gRNAs to single cell transcriptomes (Fig. 2a; Sup-
plementary Fig. 1). After QC filtering, we recovered 33,944 high-quality
single-cell transcriptomes across the two cell lines, with 79% of cells
having one or more detected gRNAs. We recovered a mean of
2.5 gRNAs per cell (Fig. 2b) and 178 cells per gRNA (Fig. 2c). Tran-
scriptome quality, MOI, gRNA assignment rate, and gRNA coverage
were similar across all four sc-RNA-seq batches (10x Genomics lanes)
as well as the two cell lines tested (Supplementary Fig. 3).

To systematically assess the effect of each CRISPR perturbation
on target gene expression, we adapted an iterative differential
expression testing strategy in which all single cell transcriptomes are
computationally partitioned into cells with or without a given gRNA2.
These two groups are then tested for differential expression of all
genes within 1 megabase (Mb) (upper estimate of topologically asso-
ciated domain size in mammalian genomes23) upstream and down-
streamof the gRNA target site (Fig. 1; Fig. 2a; “Methods”). In both VP64-
and VPR-mediated CRISPRa screening experiments, we observed clear
upregulation from both promoter and enhancer-targeting gRNAs
(276/391 log2FC > 0, 70.6%, P < 2.2 × 10−16, Fisher’s Exact Test;
Fig. 2d, e). The presence of an excess of highly significant P-values for
cells harboring targeting gRNAs versus non-targeting controls (NTCs)
also indicates that this multiplex framework successfully detects
upregulation of genes from CRISPRa perturbations (Fig. 2d). Effects
were consistently much stronger and more significant in the dCas9-
VP64 cell line as compared to the dCas9-VPR line (Supplementary
Fig. 3). This may be due to differences between the VP64 and VPR
effectors, site-of-integration effects (VP64 line is monoclonal while
VPR line is polyclonal), MOI differences of the integrated effectors,
power differences (more cells were recovered per perturbation for the
VP64 line than the VPR line), or a combination of these factors.

To identify significant associations between cCRE-targeting
gRNAs and their target genes, which we term “hit gRNAs”, we set an
empirical false discovery rate (FDR) threshold based on the P-values
from the NTC gRNA differential expression tests, which are subject to
the same sources of noise and error as the targeting gRNA tests. Using
an empirical FDR cutoff of 0.1 (“Methods”), we identified 59 activating
gRNA hits, including 8 TSS-targeting positive control gRNAs, 39 can-
didate promoter-targeting gRNAs, 9 distal enhancer hit gRNAs, 2 distal
enhancer hit gRNAs wherein the target gene of CRISPRa vs. CRISPRi
differed, and 1 distal enhancer non-hit gRNA (in the last three contexts,
hit vs. non-hit refers to whether they were “hits” in the previous
CRISPRi-based screen with the same guides and cell line2) (Fig. 2e;
Supplementary Fig. 4). Successfully activating gRNAs were strongly
enriched for targeting regions proximal to the genes that they upre-
gulated (Fig. 2f) and were specific to their predicted target (45/47
promoter-targeting gRNA hits and 9/12 successful enhancer-targeting
gRNAs exclusively upregulated the predicted target and no other gene
within 1Mb; Supplementary Fig. 4; Supplementary Data 2–4). The
gRNAs that upregulated a gene other than the predicted target are
discussed further below.Of note, we also observed no instances where
targeting a regulatory element, whether a promoter or enhancer,
caused significant upregulation of >1 gene.

Taken together, these results demonstrate the potential of this
framework to efficiently identify promoter- or enhancer-targeting
gRNAs that drive specific upregulation of their target genes in a cell
typeof interest. Of note, the promoters thatwere successfully targeted
with CRISPRa included genes that were already well-expressed (e.g.,
CCND2, GNB1), including two that are haploinsufficient neurodeve-
lopmental disease genes (FOXP1, CHD8) (Fig. 2g, h; Supplementary
Fig. 4; Supplementary Fig. 5; Supplementary Data 2–4). For CHD8, in
which variants leading to haploinsufficiency are important risk factors
for ASD and NDD24,25, we identified multiple CRISPRa gRNAs targeting
distinct isoform-specific promoters (Fig. 2h; Supplementary Fig. 4).

Our strongest hitswere at the promoters of geneswith very lowor
undetectable expression in K562 (e.g., ANK2, BCL11A; Fig. 2g; Supple-
mentary Fig. 5; Supplementary Data 2–4). For example, we identified
multiple CRISPRa gRNAs targeting ANK2, an ASD/NDD risk gene with a
complex isoform structure24,25 that is very lowly expressed inK562 cells
(Fig. 2i). Interestingly, the strongest hits for ANK2 all targeted a TSS
that is not prioritized by biochemical marks (i.e., it is relatively inac-
cessible and displays a low degree of H3K27ac in K562 cells compared
to candidate TSSs of other genes in our library; Fig. 2i). On the other
hand, for many targeted TSSs or promoters, only one gRNA, if any,
activated their target gene when coupled to CRISPRa. More specifi-
cally, out of the 313 candidate promoter-targeting gRNAs designed to
50 annotated TSSs of 9 genes, only 37 gRNAs, targeting 11 TSSs and 5
genes, successfully mediated upregulation. One gRNA upregulated a
different gene (WWC3) than the intended target (FOXP1). These results
underscore the value of inclusive, empirical screens to identify both
CRISPRa-competent promoters as well as gRNAs that can successfully
activate them.

At the outset of this work, it was unclear if targeting CRISPRa
perturbations to enhancers alone (without co-targeting putatively
associated promoters) could reliably increase target gene expression
to an extent detectable with conventional sc-RNA-seq9,12,13. To deter-
mine if CRISPRa targeted to a single enhancer alone could effectively
upregulate target gene expression, we analyzed our 50 targeted can-
didate enhancers, 25 of which were previously validated by multiplex
CRISPRi in K562 cells2. We observed target gene upregulation for 8 of
these 50 targeted candidate enhancers (as noted above, mediated by
12 gRNAs; Fig. 2g; Supplementary Fig. 4; Supplementary Fig. 5). Six of
the 8 enhancers come from the set of 25 enhancer-gene pairs that we
also identified with CRISPRi2, including several cases where distinct
gRNAs targeting the same enhancer are both successful, e.g. two
CRISPRa-competent enhancers of ANXA1 (Fig. 2g; Supplementary
Fig. 4; Supplementary Fig. 5). In addition, we identified: (1) an
enhancer-targeting gRNA that was not a hit in the CRISPRi screen, but
here led to upregulation of HMGA1; and (2) two enhancer-targeting
gRNAs that mediate downregulation of TUBA1A when coupled to
CRISPRi, but upregulation of ASIC1 when coupled to CRISPRa.

ASIC1 is not typically detected as expressed in K562 cells,
explaining why e-ASIC1 was not detected as necessary for ASIC1
expression via CRISPRi. In other words, this enhancer was detected as
necessary for high TUBA1A expression (an enhancer-gene pair dis-
covered with CRISPRi) but sufficient for increasing ASIC1 expression
when targeted with CRISPRa. While the precise mechanisms under-
lying this differential behavior of e-ASIC1 in relation to these two genes
remains to be characterized, it may be that be that ASIC1 requires a
higher degree of stimulation (in this case, introduced via a CRISPRa
activation), whereas TUBA1A is activated sufficiently via the same
enhancer at a lower level of stimulation (i.e. at thebaseline resting state
of K562 cells). Alternatively, the TUBA1A link may be a false positive of
the CRISPRi study2, which used an empirical 10% FDR for
identifying hits.

Taken together, these results show that multiplex CRISPRa
screens leveraging sc-RNA-seq can identify enhancer-targeting gRNAs
that can mediate upregulation of specific genes without co-targeting
of the corresponding promoters (Fig. 2g; Supplementary Fig. 4; Sup-
plementary Fig. 5; Data 2–4). Furthermore, differences in activity and
target-choice despite using the same gRNAs hint at potential differ-
ences between CRISPRi and CRISPRa that warrant further exploration.

Multiplex single-cell CRISPRa screening of regulatory elements
in post-mitotic iPSC-derived neurons
Wenext sought to extend this frameworkbeyondK562 cells to amodel
that is more physiologically relevant, post-mitotic human induced
pluripotent stem cell (iPSC)-derived neurons (Fig. 3a)26. We initially
attempted to generate an iPSC line with CRISPRa-VP64 machinery
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integrated randomly via lentiviral transduction. However, monoclonal
lines generated with this approach silenced the CRISPRa-VP64
machinery during neural differentiation, preventing use in our
screening framework. Indeed, delivery of CRISPRa machinery to post-
mitotic neurons is considerably more challenging than workhorse
cancer cell lines and requires more complex cell engineering and
delivery approaches27. To circumvent this, we used a WTC11 iPSC line
equipped with a doxycycline-inducible NGN2 transgene expressed

from the AAVS1 safe-harbor locus to drive neural differentiation, as
well as an ecDHFR-dCas9-VPH construct, expressed from the CLYBL
safe-harbor locus, to drive CRISPRa (Supplementary Fig. 6A, B)6. In this
line, addition of doxycycline to induce NGN2 expression and tri-
methoprim (TMP) to inhibit the ecDHFR degrons drives neural dif-
ferentiation and initiates CRISPRa6. Expression of NGN2 in iPSCs
commits these cells to a neuronal fate, and post-mitotic neurons with
neuronal morphology develop within days28.
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After optimizing iPSC transfection conditions to achieve high
numbers of integrated gRNAs per cell via nucleofection, we integrated
the same gRNA library (at a 5:1 gRNA-library:transposase ratio) into
iPSCs as we did for the K562 screen (Fig. 3a). Following integration, we
confirmed functional CRISPRa activity in these neurons via the same
tdTomato expression assay used in our K562 CRISPRa validation
(Supplementary Fig. 6b). In addition to optimizing transfection con-
ditions, we sought to further boost the multiplicity of gRNA integra-
tions per cell by selecting the cells with a high concentration of
puromycin (Fig. 3a). After differentiating to neurons over 19 days, we
proceeded to sc-RNA-seq. Half of the neurons went directly into sc-
RNA-seq (10x Genomics), while the other half were dissociated and
flow sorted based on GFP expression (top 40%) prior to sc-RNA-seq,
again with the goal of boosting the multiplicity of gRNA integrations
(Fig. 3a). After quality control filtering, we retained 51,183 single-cell
transcriptomes, of which we recovered 1+ associated gRNAs for 89%.
With our optimized transfection protocol, we identified a mean of 6.1
gRNAs/cell (Fig. 3b) and a mean of 638 cells that harbored each indi-
vidual gRNA (Fig. 3c). Sorting on GFP expression prior to sc-RNA-seq
resulted in a 2-fold increase in the number of gRNAs identified per cell
(Supplementary Fig. 7).

Our differentiated neurons most closely resemble 14- to 35-day
differentiated neurons obtained via NGN2 induction in iPSCs by an
independent group29 (inferred by integration of these sc-RNA-seq
datasets; Fig. 3d; Supplementary Fig. 8). A minority of the neurons
transcriptionally resemble an intermediate neuronal fate, a difference
that we tentatively attribute to the absence of co-cultured glia in our
differentiation protocol. Although glia are known to promote
maturation of NGN2-induced neurons (and were used in generating
the dataset we are comparing to29), we excluded them because they
can also introduce culture variability due to batch effects introduced
by primary glia28.

We confirmed that the neurons had progressed beyond a plur-
ipotent state and were committed to a post-mitotic neuronal fate by
the expression of the pan-neuronal marker MAP2 and the lack of
expression of the pluripotencymarkerNANOG (Supplementary Fig. 8).
These neurons also express LHX9 and GPM6A, markers of central
nervous system (CNS) neurons (Supplementary Fig. 8c), and CUX1 and
SLC17A7, but not GABAergicmarkersGAD1 andGAD2, supporting their
assignment as excitatory rather than inhibitory neurons (Supplemen-
tary Fig. 8f)26. Consistent with this, when we co-embedded our tran-
scriptome data onto data from Lin et al. 29, they overlay with “Fate 2”
and “Fate 3” cells, which transcriptionally resemble CNS neurons
(Fig. 3d; “Methods”). Of note, there was no readily apparent enrich-
ment of specific gRNAs within particular clusters (Supplementary
Fig. 9),which is consistentwith the specificity andmodest foldchanges
of the observed instances of upregulation (Supplementary Fig. 9).

We applied the same differential expression testing strategy as
used for the K562 screen to the iPSC-derived neuron screen data, with

an empirical FDR cutoff of 0.1 to call significant hits. Similarly to the
K562 screen, we observed clear upregulation from targeting gRNAs
(281/383 log2FC > 0, 73.4%, P < 2.2 × 10−16, Fisher’s Exact Test) and an
excess of highly significant P-values for targeting gRNA tests compared
toNTCs (Fig. 3e), confirming that this overall framework is transferable
to more physiologically and clinically relevant models such as iPSC-
derived neurons. As with the K562 screen, we observed strong
enrichment for genomic proximity between successful gRNAs and
their target genes, but no such enrichment for NTCs tested for asso-
ciations with target genes randomly selected from the same set
(Supplementary Fig. 10).

There were 17 hit gRNAs in neurons (FDR <0.1; Fig. 3g), all of
which were TSS-targeting positive controls (n = 6) or candidate pro-
moters of ASD/NDD risk genes (n = 11) (Supplementary Fig. 11). Of
these 17 hit gRNAs, 12 were also hits in the K562 screen while 5 were
specific to iPSC-derived neurons (Supplementary Fig. 12a). The screen
in iPSC-derived neurons was strikingly target-specific: 16 of 17 of our
identified hits, all promoter-targeting gRNAs, upregulated their
anticipated target gene and no other genes within the 1-Mb window
tested (Supplementary Data 5–7). The only gRNA hit in iPSC-derived
neurons resulting in upregulation of an unintended gene was a gRNA
targeting theTSSof thepseudogenePPP5D1 that led to upregulationof
the calmodulin gene CALM3 (Supplementary Fig. 11d), but this is pre-
sumably due to these two genes sharing a bidirectional, outward-
oriented core promoter. This gRNA also drove upregulation of CALM3
in the CRISPRa screen of K562 cells (Supplementary Fig. 4d). These
results, in combination with the K562 results discussed earlier, reveal
that certain gRNAs designated ‘TSS-targeting positive controls’ based
on their ability to yield a growth phenotype in bulk screens of cancer
cell lines, do not yield strong upregulation of their putative target gene
(Supplementary Fig. 4c; Supplementary Fig. 11c). We observed no
significant differences across several characteristics (e.g., GC content,
baseline target gene expression level, the number of cells harboring
each gRNA) between gRNAs yielding successful activation and those
not in K562 cells and neurons, with the exception that K562 enhancer
hit gRNAs tended to havemore cells (Supplementary Fig. 13). However,
upon conducting an analysis of epigenetic features available for both
cell lines as well as for in vivo developing brain samples, we found that
promoter- and enhancer- targeting hit gRNAs were more likely to fall
within regions of active, open chromatin andwere converselydepleted
from regions with repressive marks (Supplementary Fig. 14; Supple-
mentary Data 8).

Similar to K562 cells, we observed several instances where a spe-
cific TSSwasmost amenable to activation (Supplementary Fig. 15).One
such example is TCF4, an ASD/NDD risk gene24,25. We tested 14 candi-
date TSSs of TCF4 and identified 5 gRNAs capable of driving upregu-
lation of TCF4 in neurons, all of which target the same candidate TSS
that resides in open chromatin with strong H3K27ac signal (Fig. 3h, i;
Supplementary Figs. 15a, 16). Our hits also included examples of cell

Fig. 3 | Multiplex single cell CRISPRa screening of regulatory elements in post-
mitotic iPSC-derived neurons. a Screen workflow. b gRNAs/cell. c Cells/gRNA.
d UMAP projection of the neuron dataset from this study (blue, 51,183 cells
downsampled to 5000 cells to aid with visualization) onto a sc-RNA-seq differ-
entiation time-course from a similar differentiation protocol and NGN2 iPSC line
(21,044 cells)29. e (Left) QQ-plot displaying observed vs. expected P-value dis-
tributions for targeting (blue) and NTC (downsampled) populations. (Right) QQ-
plot for targeting tests against their intended/programmed target (blue) compared
to targeting tests of all other genes with 1Mb of each gRNA (pink) and NTCs (gray
downsampled). P-values are from a two-tailed Wilcoxon rank-sum test. f Average
log2 fold change and P-values exclusively for gRNAs that target putative enhancers
in K562 cells (left) and iPSC-derived neurons (right). P-values as in panel (e).g (Top)
Average log2 fold change in expression between cells with each targeting gRNA vs.
controls for each of the primary/programmed target genes. (Bottom) Categorical

heatmap showing which of the perturbations produced significant upregulation
using an Empirical FDR approach (EFDR <0.1).hAverage log2 fold change between
cells with a given gRNA and controls for select hit gRNAs (plotted as in Fig. 2d).
Number of cells bearing each targeting gRNA (from left to right): CCND2 (n = 350),
ZC3HAV1 (n = 765), TBR1 (n = 455), TBR1 (n = 655), BCL11A (n = 964), FOXP1
(n = 1198), FOXP1 (n = 917), TCF4 (n = 1051), TCF4 (n = 1253). Control cells are
downsampled to have the same number of cells as the average number of cells
detected per gRNA (n = 638) for visualization. P-values as in (e). i Of 14 targeted
candidate promoters, five hit gRNAs for TCF4 target the same candidate promoter
that aligns with biochemical marks of regulatory activity (ATAC-Seq and H3K27ac).
Empirical P-values are visualized alongside tracks for iPSC-derived neuron ATAC-
seq (accessibility)54, and H3K27ac54, and RefSeq validated transcripts (ENSEMBL/
NCBI). P-values as in panel (e). EFDR sets as in panel (g). j Hits included multiple
gRNAs targeting TBR1. Genomic tracks, P-values, and EFDR sets as in panel (i).
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type-specific promoters. Among these were several gRNAs targeting
candidate promoters of ASD/NDD risk genes capable of upregulating
genes that are not expressedor rarely expressed in iPSC-derivedNGN2-
differentiated neurons (Fig. 3h; Supplementary Fig. 16). For example,
gRNAs targeting the promoter of TBR1, a transcription factor expres-
sed in forebrain cortical neurons but known not to be expressed in
NGN2-differentiated iPSC-derived neurons26 led to TBR1 upregulation
(Fig. 3j; Supplementary Figs. 15b, 16). Of note, these same gRNAs did
not result in upregulation of TBR1 in K562 cells. This suggests that
these neurons are in a permissive state for CRISPRa to activate TBR1,
despite a lack of highly accessible chromatin in the region targeted by
the TBR1 gRNA (Fig. 3h,j; Supplementary Fig. 15b). Whether these dif-
ferences in “TBR1 activatability” aredue todifferences in the chromatin
environment at this locus between K562 cells and iPSC-derived neu-
rons, or alternatively differences in the milieu of trans-acting factors,
remains an open question.

However, in contrast to the cell type-specific promoter examples
noted above, we more often observed consistent upregulation across
promoter targets and TSS-targeting controls between the two cell
types (Supplementary Fig. 12). Specifically, 12 out of 17 of the pro-
moter- and TSS-targeting hit gRNAs in neurons were also hits in K562
cells, and upregulation was correlated across cellular contexts (Pear-
son’s correlation coefficient = 0.75, Supplementary Fig. 12). In contrast,
we observed striking cell type-specificity for targeted enhancers that
were successfully upregulated. While 20% (12/60) of our
K562 screening hits were enhancer-targeting gRNAs (Supplementary
Fig. 4), none of these were also hits in neurons (Supplementary Fig. 11;
Supplementary Fig. 17). Even putting aside significance, the fold-
effects on the anticipated target genes of K562-competent activating
gRNAs were not well-correlated between cell types (Fig. 3f; Supple-
mentary Fig. 12b, Pearson’s correlation coefficient = −0.18). Overall,
these results show that it is possible to drive cell type-specific upre-
gulation of a gene of interest by targeting CRISPRa to a cell type-
specific distal enhancer, without co-targeting of the corresponding
promoter.

Reanalysis with covariates and singleton experimental valida-
tions support and extend results
To better account for covariates, we applied SCEPTRE30–33, an inde-
pendently developed analytical framework based on conditional
resampling that integrates various covariates to calibrate the statistical
assessment of results in single cell CRISPR screens (“Methods”).
SCEPTRE detected clear signals in both datasets (Supplementary
Figs. 18, 19; Supplementary Data 9–14). Encouragingly, SCEPTRE
results aligned well with our original approach, but yielded more hits.
Our original approach identified 59 activating hit gRNAs in K562 cells
and 17 activating hit gRNAs in neurons, while SCEPTRE found 83 K562
hits and 35 neuron hits. 48/59 K562 (81%) and 15/17 neuron (88%) hits
foundwith our approachwere also foundby SCEPTRE (Supplementary
Fig. 18, 19; SupplementaryData 9–14). The few caseswhereour original
approach found a hit that SCEPTRE did not, were primarily due to the
fact SCEPTRE has a more stringent minimum threshold on the pro-
portion of cells required to show expression of the target gene (e.g.,
ASIC1 expression is rarely detected in K562 cells, yet two independent
gRNAs targeting a distal enhancer led to clear upregulation in our
screen; see also singleton validations below).

Several notable findings arose from this analysis. First, SCEPTRE
identified a single hit gRNA yielding upregulation of SCN2A exclusively
in iPSC-derived neurons out of 20 SCN2A-targeting gRNAs tested
(Supplementary Fig. 17; Supplementary Data 14). This is the same “H1
gRNA” we recently used in rescue studies in SCN2A+/− haploinsuffi-
cient mice and human iPSC-derived neurons11. Second, despite more
than double the hits in neurons (35 neuron hits with SCEPTRE vs. 17
with our original approach), and several new enhancer hits in K562
cells (21 enhancer hits with SCEPTRE vs. 12 with our original approach),

the signal from K562 enhancers is still overwhelmingly cell type-
specific (SCEPTRE calls only 1 enhancer hit in neurons vs. 21 enhancer
hits in K562 cells) (Supplementary Figs. 18, 19; Supplementary
Data 9–14).

To further validate our results, we selected 8 of our hit gRNAs to
test in singleton experiments. Validation gRNAs were selected to
represent a range of significance levels, as well as both shared and cell-
type specific promoters and enhancers (Supplementary Data 15). We
cloned the 8 gRNAs as singleton constructs, introduced them at high
MOI to create 3 independent polyclonal cell lines in each cell context,
selected, and in the case of neurons, differentiated cells, and then
created bulk RNA-seq libraries for each line (8 gRNAs × 2 cell con-
texts × 3 replicate cell lines = 48 independent polyclonal lines and
corresponding bulk RNA-seq samples). We then compared expression
levels in the 3 replicate lines with a given targeting gRNA to expression
levels in the remaining 21 lines from that cell context as a control
(mirroring our single-cell analysis framework).

Our validation set included sgRNA hits that are expected to drive
upregulation in both cell types (BCL11A, DNMT3B, TCF4, FOXP1,
HMGA1), in K562 cells only (ANXA1, ASIC1), or in iPSC-derived neurons
only (TBR1). In 6/7 (K562) or 5/6 cases (iPSC-derived neurons), the
expected upregulation was observed, validation rates consistent with
the 0.1 FDR of the initial screens (Fig. 4; Supplementary Fig. 20). Fur-
ther, gRNAs targeting a cell-type specific promoter of TBR1 drove the
expected upregulation exclusively in iPSC-derived neurons (Fig. 4). Hit
gRNAs targeting e-ANXA1 and e-ASIC1, two enhancers identified as
K562-specific in our single-cell analysis, drove upregulation of ANXA1
and ASIC1 exclusively in K562 cells in singleton validations (Fig. 4). Of
note, e-HMGA1, a putative shared enhancer, drove the expected
upregulation in neurons but not in K562 in singleton validations, sowe
removed it from our list of high-confidence, singleton validated
CRISPRa-responsive CREs (Fig. 4). These experiments were designed
to validate upregulations of target genes in targeted tests, though in
some cases we were able to detect additional biologically coherent
gene expression changes on a genome-wide basis, potentially sec-
ondary effects of upregulating the primary target (Supplementary
Figs. S21, S22, Supplementary Data 16). For example, in both K562 cells
and iPSC-derived neurons, genes that were significantly down-
regulated upon CRISPRa of BCL11A are highly enriched for genes
involved in oxidative phosphorylation (Gene Set Enrichment Analysis
(GSEA); FDR q-value < 1e-20). Importantly, fold changes in target gene
expression observed in singletonbulk RNA-seq validation experiments
correlated well with results from our multiplex single-cell framework
(Pearson’s correlation coefficient = 0.83) (Supplementary Fig. 23).
Taken together, these results refine and extend our framework and
confirm our ability to identify target- and cell type- specific CRISPRa-
responsive regulatory elements and gRNAs that target them.

Discussion
Here we describe a scalable, multiplex single-cell CRISPRa screening
framework to identify cell type-specific CREs, the genes they reg-
ulate, and gRNAs that successfully target them. In applying this fra-
mework, we identified gRNAs functionally and cell type-specifically
targeting endogenous CREs of haploinsufficient genes in K562 cells
and iPSC-derived excitatory neurons. To our knowledge, this is the
first screen of this scale and kind (highly multiplexed, single-cell
resolution noncoding CRISPRa perturbations) performed success-
fully in a post-mitotic, iPSC-derived human cell type. Our results
include several examples of enhancer-target gene relationships that
are experimentally supported in their native genomic context, which
remain exceedingly rare in the literature due to the significant
technical barriers that have persisted despite major efforts to dis-
cover or confirmmore such relationships. Importantly, our approach
lays the groundwork for discovering hundreds to thousands more
endogenous enhancer-gene relationships in non-workhorse cancer
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cell lines such as post-mitotic iPSC-derived neurons. For example, we
anticipate it will be possible to massively scale screening for gRNAs
and cell-type-specific CREs capable of upregulating remaining func-
tional copies of the roughly 660 genes known to cause disease when
haploinsufficient.

In principle, increases in target gene expression of less than 100%
to a few fold, especially if cell-type specific, would be ideal for ther-
apeutic purposes in haploinsufficient disorders10,11,17. Many of our fold-
changes meet these criteria (median fold-change for all hits = 1.7; 79/
118 SCEPTRE hits achieved at least 50% upregulation, 42/118 hits
achieved at least a 2-fold upregulation; 49/118 hits achieved between
1.5 and 2.5-fold upregulation). Furthermore, even in cases where
upregulation is lower or higher than theoretically ideal at the mRNA
level, there can still be therapeutic benefit (e.g., in cases where partial
rescue of expression is sufficient for phenotypic improvement, or
where post-transcriptional mechanisms buffer overcorrection of
expression levels)11,17.

Several of our strongest gRNA hits were not prioritized by typical
predictors of enhancer function, such as chromatin accessibility or
H3K27ac histone modifications. For example, we are able to upregu-
late TBR1 in iPSC-derived neurons by targeting a promoter region that
is largely within closed chromatin in this cellular context. Indeed, while
measures of proximity, accessibility, and enhancer-related biochem-
ical marks are all strong predictors, none are conclusive or determi-
nistic predictors of regulatory sequence function, either alone or in
combination. This underscores the importance of empirical, sys-
tematic screens for CRISPRa-responsive regulatory sequences with
approaches such as the one described here. Ultimately, a variety of
factors including chromatin accessibility andepigeneticmodifications,
gRNA design and target-specific nuances around CRISPRa-respon-
siveness, appear to collectively shape the likelihood and extent of
success of a given CRISPRa perturbation in a given cellular context.
Our framework has now provided a set of validated CRISPRa sgRNAs
that could be used as positive controls moving forward in other

Fig. 4 | Reanalysis with covariates and singleton experimental validations
support and extend results. a Singleton validation results for K562 cells. Cate-
gorical heatmap indicating whether a K562 hit gRNA was detected with SCEPTRE,
our original approach, targeted a promoter or enhancer, drove K562-specific
upregulation, and whether it was validated with singleton experiments. Hit CREs
thatdroveupregulation in singletonvalidations are labeled and colouredaccording
to target CRE class. b Boxplots displaying the average log2 fold change between
cells with a given gRNA (n = 3 independent lines) and controls (n = 21 lines). Nor-
malized expression displayed in transcripts per million (TPM). Boxes represent the
25th, 50th, and 75th percentiles. Whiskers extend from hinge to 1.5 times the inter-
quartile range. All data points are also plotted on top of the box plot for trans-
parency. P-values are from a two-tailed Wilcoxon rank-sum test with a significance
threshold of 0.1. c Singleton validation results for iPSC-derived neurons.

Categorical heatmap indicating whether a neuron hit gRNA was detected with
SCEPTRE, our original approach, targeted a promoter or enhancer, drove iPSC-
derived neuron-specific upregulation, and whether it was validated with singleton
experiments. Hit CREs that drove upregulation in singleton validations are labeled
and coloured according to target CRE class. d Boxplots displaying the average log2
fold change between cells with a given gRNA (n = 3 independent lines) and controls
(n = 21 lines). Normalized expression displayed in transcripts per million (TPM). P-
values as in panel (b). The two instances where expected upregulation was not
observed in a particular cell context are labeled in gray above the corresponding
box plot (specifically gRNAs targeting e-HMGA1 in K562 cells and a promoter of
FOXP1 in neurons). Boxes as inpanel (d). The 14/16 experimentswhere the expected
result was observed are labeled in black above the corresponding box plot, while
the 2/16 that are labeled in gray failed to validate.
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CRISPRa screens (in at least K562 and iPSC-derived postmitotic neu-
rons; the set that overlap may be the best bet for potential ‘universal’
controls), thereby filling a critical gap. Future scaling of this technol-
ogy and its application to additional, clinically relevant cell types, may
provide rich training sets that may enable derivation of rational
CRISPRa gRNA design rules for distal, cell-type-specific gene activa-
tion, which, in contrast to promoters and CRISPRi16,34,35, are quite
lacking at present. Further, these results illustrate the unique potential
of noncodingCRISPRa screens to identify regulatory elements that can
mediate upregulation of target genes, regardless of whether or not the
gene is natively expressed in the cell type of interest or not.

A major question that we sought to answer through these
experiments was whether one can target candidate enhancer
sequences with a CRISPRa perturbation and observe upregulation of
an intended target gene via scRNA-seq. There have been relatively few
efforts to apply CRISPRa to enhancers to date, and most have focused
on a handful of enhancer regions and typically onlymeasuring changes
in expression of a specific nearby gene of interest as a readout9,12,13.
Recent literature suggests that co-targeting a promoter and the can-
didate enhancer in question can make the enhancer CRISPRa pertur-
bationsmore efficient and reliable13. Although feasible, co-targeting an
enhancer and promoter is less likely to yield cell-type-specific upre-
gulation of target genes, ismore complex and increases the chances of
effects on off-target genes (not to mention off-target cell types).
Despite using gRNAs that were optimized for CRISPRi screening in our
CRISPRa screen, we observed target gene upregulation for 8 of 25
enhancers that we targeted (32%), showing that one can reliably
increase target gene expression by targeting enhancers alone. We
imagine that this success rate can be improved via a combination of
brute force, i.e. testing more gRNAs, improved CRISPRa activation
domains36, and better CRISPRa-specific gRNA design.

Multiplex single-cell CRISPRa screening is a scalable approach to
identifying functional CRISPRa gRNAs that can upregulate intended
target genes in either a general or cell-type-specific manner. We
introducedmultiple perturbations per cell, which increased the power
of our assay (i.e. ameanof 1 gRNAper cellwouldhave required sc-RNA-
seq of >400,000 cells to achieve the same power). For additional
context, the increased hands-on time and reagents required to gen-
erate, select, and differentiate the 48 cell lines used to validate the 16
gRNAs across the two cell contextsmade the costs of the singleton and
pooled experiments comparable, despite singleton experiments
assessing <5% as many gRNAs. Alternative bulk approaches such as
those based on integrated fluorescent reporters or FISH scale linearly
with a new set of reagents required for eachnewcandidate target gene.

One potential concern is that multiplex, single-cell CRISPR
screens that treat cells as pseudo-replicates have the potential to suffer
from an overestimation of differentially expressed genes due to the
statistical dependency between cells originating from the same start-
ing population37. Our singleton validation results allay this concern,
but we cannot fully rule out overestimation. Further, given the ease of
generating large numbers of differentiated neurons with in vitro
human neural cultures, and then sorting on the GFP-positive gRNA
expression vector prior to single-cell transcriptome profiling, our
approach offers a straightforward way to further boost the number of
gRNAs captured per cell. In addition, improvements in methods to
capture specific transcripts38–40, or to perform scRNA-seq more
cheaply41,42, may enable considerably larger screens for a given cost.

Methods
Cell lines and culture
K562 cell culture. K562s cells (ATCC; Cat. No. CCL-243) are a pseu-
dotriploid ENCODE Tier I erythroleukemia cell line derived from a
female (age 53) with chronic myelogenous leukemia15. All K562 cells
were grown at 37 °C, and cultured in RPMI 1640 + L-Glutamine (GIBCO,
Cat. No. 11-875-093) supplementedwith 10% fetal bovine serum (Fisher

Scientific, Cat No. SH3039603) and 1% penicillin-streptomycin
(Thermo Fisher Scientific, Cat. No. 15070063).

Induced pluripotent stem cell (iPSC) culture. Human WTC11 iPSCs
equipped with a doxycycline-inducible NGN2 transgene expressed
from the AAVS1 safe-harbor locus as well as an ecDHFR-dCas9-VPH
construct (VPH consists of 12 copies of VP16, fused with a P65-HSF1
activator domain) expressed from the CLYBL safe-harbor locus were a
gift from the Kampmann lab6. These iPSCs were cultured in mTeSR
Plus Basal Medium (Stemcell technologies; Cat. No. 100-0276) on
Greiner Cellstar plates (Sigma-Aldrich; assorted Cat. Nos.) coated with
Geltrex™ LDEV-Free, hESC-Qualified, Reduced Growth Factor Base-
ment Membrane Matrix (Gibco; Cat. No. A1413302) diluted 1:100 in
Knockout DMEM (GIBCO/Thermo Fisher Scientific; Cat. No.
10829018). mTeSR Plus Basal Medium was replaced every other day.
When 70–80% confluent, cells were passaged by aspirating media,
washing with DPBS (GIBCO/Thermo Fisher Scientific; Cat. No.
14190144), incubating with StemPro Accutase Cell Dissociation
Reagent (GIBCO/Thermo Fisher Scientific; Cat. No. A1110501) at 37 °C
for 5min, diluting Accutase 1:1 inmTeSR Plus BasalMedium, collecting
cells in conical tubes, centrifuging at 800 g for 3min, aspirating
supernatant, resuspending cell pellet in mTeSR Plus Basal Medium
supplemented with 0.1% dihydrochloride ROCK Inhibitor (Stemcell
technologies; Cat. No. Y-27632), counting and plating onto Geltrex-
coated plates at the desired number.

Human iPSC-derived neuronal cell culture, differentiation, and
CRISPRa induction. The iPSCs described above were used for the
differentiation protocol below. On day −3, iPSCs were dissociated and
centrifuged as above, and pelleted cells were resuspended in Pre-
Differentiation Medium containing the following: Knockout DMEM/F-
12 (GIBCO/Thermo Fisher Scientific; Cat. No. 12660012) as the base, 1X
MEMNon-Essential AminoAcids (GIBCO/ThermoFisher Scientific; Cat.
No. 11140050), 1X N-2 Supplement (GIBCO/ Thermo Fisher Scientific;
Cat. No. 17502048), 10 ng/mL NT-3 (PeproTech; Cat. No. 450-03),
10 ng/mL BDNF (PeproTech; Cat. No. 450-02), 1 ug/mL Lamininmouse
protein (Thermo Fisher Scientific; Cat. No. 23017015), 10 nM ROCK
inhibitor, and 2mg/mL doxycycline hyclate (Sigma-Aldrich; Cat. No.
D9891) to induce expression of NGN2. iPSCs were counted and plated
at 800K cells per Geltrex-coated well of a 12-well plate in 1mL of Pre-
Differentiation Medium, for three days. At day −2 and day −1, media
changes were performed using pre-differentiation medium without
ROCK inhibitor. On day −1, 12-well plates for differentiation were
coated with 15 ug/mL Poly-L-Ornithine (Sigma-Aldrich; Cat. No. P3655)
in DPBS, and incubated overnight at 37 degrees Celsius. On day 0, the
Poly-L-Ornithine coated plates were washed three times using DPBS,
and the plates were air dried in a 37 degree Celsius incubator until all
the DPBS evaporated. Pre-differentiated cells were dissociated and
centrifuged as above, and pelleted cells were resuspended in
Maturation Medium containing the following: 50% Neurobasal-A
medium (GIBCO/Thermo Fisher Scientific; Cat. No. 10888022) and
50% DMEM/F-12 (GIBCO/Thermo Fisher Scientific; Cat. No. 11320033)
as the base, 1X MEM Non-Essential Amino Acids, 0.5X GlutaMAX Sup-
plement (GIBCO/Thermo Fisher Scientific; Cat. No. 35050061), 0.5X
N-2 Supplement, 0.5X B-27 Supplement (GIBCO/Thermo Fisher Sci-
entific; Cat. No. 17504044), 10 ng/mL NT-3, 10 ng/mL BDNF, 1 ug/mL
Laminin mouse protein, and 2 ug/mL doxycycline hyclate. Pre-
differentiated cells were subsequently counted and plated at
400,000–450,000 cells per well of a 12-well plate coated with Poly-L-
Ornithine in 1mL of Maturation medium with 20 uM trimethoprim
(TMP) (Sigma-Aldrich, Cat No. 92131) to activate the CRISPRa
machinery in these cells (TMP stabilizes the degron-tagged CRISPRa
machinery). On day 7, half of the medium was removed and an equal
volume of fresh Maturation medium without doxycycline was added.
On day 14, half of the medium was removed and twice that volume of
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fresh medium without doxycycline was added. On day 19, neurons
were harvested for sc-RNA-seq.

Cell line generation and CRISPRa validation
K562 cells. K562 cells expressing dCas9-VP64 were generated in-
house via lentiviral integration of a dCas9-VP64-blast construct7

(Addgene Plasmid #61422) into K562 cells (ATCC; Cat. No. CCL-243).
Cells were selectedwith 10 ug/mLblasticidin, andpolyclonal cells were
single-cell sorted into 96-well plates to grow up clonal cell lines
expressing dCas9-VP64. Clonal cell lines were tested for CRISPRa
activity by testing the ability of a CRISPRa gRNA to activate a minP-
tdTomato construct21, and the highest tdTomato expressing cell line
was used for experiments. K562 cells expressing dCas9-VPR were
purchased from Horizon Discovery/Perkin Elmer (Cat. No. HD dCas9-
VPR-005), and these cells were tested for CRISPRa activity using the
same tdTomato expression assay described above.

iPSC-derived neurons. Human WTC11 iPSCs equipped with a
doxycycline-inducibleNGN2 transgene expressed from theAAVS1 safe-
harbor locus as well as an ecDHFR-dCas9-VPH construct expressed
from theCLYBL safe-harbor locuswere a gift from theKampmann lab6.
These cells were tested for CRISPRa activity using the same tdTomato
expression assay that was used to validate the K562 cell lines, which is
described above.

gRNA selection and design
A complete breakdown of gRNA library contents and overview of the
gRNA design pipeline is illustrated in Fig. S1. Briefly, enhancer-
targeting gRNAs were selected from our CRISPRi library2,43. Specifi-
cally, 50 spacer sequences (2 per candidate enhancer) were randomly
selected from the list of 664 significant “hit” enhancer-gene pairs in the
at-scale library. Another 50 spacer sequences targeting an additional
25 candidate enhancers (again 2 per candidate enhancer) were ran-
domly selected fromcandidate enhancer non-hits (i.e., gRNAs from the
at-scale library targeting candidate enhancer regions with strong bio-
chemical marks predictive of regulatory activity that did not yield
significant downregulation of any neighboring genes in our previous
CRISPRi study). An additional 30 TSS-positive control gRNAs were
randomly sampled from the top quartile of gRNAs recommended by
Horlbeck et al. (hCRISPRa-v2 library)16. 50NTC negative control spacer
sequences were also selected from the hCRISPRa-v2 library16. The 313
candidate promoter targeting gRNAs were either selected from the
Horlbeck et al. library16 or designedusing FlashFry43 (Fig. S1). Briefly, 50
candidate promoters of 9 NDD risk genes (TCF4, FOXP1, SCN2A, CHD8,
BCL11A, TBR1, SHANK3, SYNGAP1, ANK2)24,25 were pulled from Basic
GENCODE annotations44 and were filtered for “type” == “transcript”
and “transcript_type” == “protein coding”. Separate bed files were
generated for all promoter regions defined as the 500 bp upstream of
eachproteincoding transcript. Careful attentionwaspaid to the strand
orientation of each transcript when annotating promoter regions. Bed
files were sorted and merged to combine multiple promoters with
>1 bp overlap into a single promoter annotation. Transcript bounds
provided for each merged promoter begin +1 bp from the end of the
promoter and end at the position corresponding to the longest tran-
script mapping to that promoter. NGG-protospacer within these can-
didate promoters were identified using FlashFry and subsequently
scored using default parameters (see FlashFry manuscript and user
guide for a complete description of scoring metrics/algorithms)43. A
TSS-distance metric was then calculated for each gRNA using human
fetal brain 5’ Capped Analysis of Gene Expression (CAGE) data45,46

obtained from FANTOM (https://fantom.gsc.riken.jp/5/sstar/FF:10085-
102B4; CTSS, hg38). First, the strongest FANTOM annotated TSS was
identified within each +/−500 bp region up and downstream of each
hg38 Gencode Basic protein coding transcript TSS. For regions with a
tie between the highest scoring FANTOM TSSs, the TSS position

closest to Gencode annotated TSS position was prioritized. Each can-
didate sgRNA from FlashFry was annotated with the distance to the
nearest FANTOM TSS using the command “bedtools closest -a
sgRNAs_with_fantom_tss -b strongest_fantom_tss_within_gencode_pro-
moter -D b -t first.” For Gencode Basic protein coding transcripts
without a human fetal brain FANTOM peak within 500 +/−bp, the
distance of each sgRNA to the nearest Gencode TSS was reported
instead. A distance of zero indicates that an sgRNA overlaps with the
nearest annotated TSS. Multiple rounds of successively relaxing score
and distance thresholds were then iterated until the top 4 gRNAs for
each candidate promoter were selected (five selection rounds in total).
Optimal TSS-distances were approximated using genome-wide CRIS-
PRa design rules34. gRNAs flagged for potentially problematic poly-
thymidine tracks or GC content were excluded. The gRNA selection
criteria used in each round were as follows:

Round 1: 1. TSS Distance between −150 and −75 BP 2.
Doench2014OnTarget >= 0.2 3. Dangerous_in_genome <= 1 4.
Hsu2013 > 80.

Round 2: 1. TSS Distance between −400 and −50 BP 2.
Doench2014OnTarget >= 0.2 3. Dangerous_in_genome <= 1 4.
Hsu2013 > 80.

Round 3: 1. TSS Distance between −400 and −50 BP 2.
Doench2014OnTarget >= 0.2 3. Dangerous_in_genome <= 1 4.
Hsu2013 > 50.

Round 4: 1. TSS Distance between −400 and −50 BP 2.
Doench2014OnTarget >= 0.2 3. Dangerous_in_genome <= 2 4.
Hsu2013 > 50.

Round 5: 1. Doench2014OnTarget >= 0.2 2. Danger-
ous_in_genome <= 2 3. Hsu2013 > 10 4. DoenchCFD_maxOT <0.95

Complete oligo sequences with gRNA spacers and additional
sequences for cloning into piggyFlex are listed in Supplementary
Data 1. Note all gRNAs inour library aredesigned/modified to startwith
a G followed by the 19 base pair spacer to facilitate Pol III transcription.

gRNA library cloning into piggyFlex vector
The493 gRNAswith associated 10N randombarcodeswere ordered as
an IDT oPool and PCR amplified with Q5 High-Fidelity polymerase
(NEB, Cat. No. M0491S) to make double stranded DNA. The piggyFlex
backbone vector was digested with SalI (NEB, Cat. No. R3138S) and
BbsI (NEB, Cat. No. R0539S) in 10X NEBuffer r2 at 37 degrees Celsius
overnight to ensure complete digestion of the backbone. This diges-
tion cuts out the EF1a-puro-GFP cassette of the vector which is then
added back in a later cloning step. The digestion product was run on a
1% agarose gel in TAE buffer, and the linear backbone vector (5098
base pairs in size) was gel extracted using a gel extraction kit (NEB, Cat.
No. T1020S). The second product from the digestion (2878 base pairs)
which contains the EF1a-puro-GFP cassette was saved for a later
assembly reaction in the final cloning step (described below). The PCR
amplified IDT oPool gRNAs with associated 10N random barcodes
were cloned into the linear backbone using NEBuilder HiFi DNA
Assembly (NEB, Cat. No. E2621S) using 0.15 pmol of the insert (gRNA
library) and 0.02 pmol of the linear backbone. Assembled product was
transformed into electrocompetent cells (NEB, Cat. No. C3020K) and
plasmid DNA was extracted with a midiprep kit (Zymo Research, Cat.
No. D4200). The resulting vector was then digested with SapI (NEB,
Cat. No. R0569S), for one hour at 37 degrees Celsius. Digested product
was cleaned with 0.5X AMPure beads (Beckman Coulter, Cat. No.
A63880) and cleaned digested linear backbone was used for a sub-
sequent assembly reaction to add the EF1a-puro-GFP cassette back into
the final piggyFlex vector between the gRNA sequence and the 10N
random barcode sequences. 0.014 pmol of the linear backbone was
assembled with 0.056pmol of the insert sequence and the assembly
reactionwas cleanedwith a 0.5X AMPure step. The assembled product
was transformed into electrocompetent cells and plasmid DNA was
extracted with a midiprep kit. The final plasmid library was
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subsequently PCR amplified and sequenced to ensure that all 493
gRNAs were successfully cloned into the piggyFlex vector. Note: The
10N barcode is an additional gRNA identification strategy that can be
used to assign gRNAs to cells, however, we used directly sequenced
gRNAs (from the 10xGenomics capture sequence) to identify gRNAs in
this work as this more accurately assigns gRNA transcripts to cells38.

Transfection of the gRNA library, selection, and cell culture
K562 cells. A total of 16 million K562 cells (8 million K562-VP64 cells
and 8 million K562-VPR cells) were transfected with the gRNA library
and thepiggyBac transposase (SystemBiosciences, Cat. No. PB210PA-1)
at a 20:1 molar ratio of library:transposase using a Lonza 4D nucleo-
fector and the Lonza nucleofector protocol for K562 cells. The 16
million cells were split across 8100uL nucleofection cartridges, with
each individual nucleofection cartridge receiving two million cells and
2 ug of total DNA. After nucleofection, cells were transferred to pre-
warmed RPMI media in a cell culture flask and incubated at 37 degrees
Celsius. One day after transfection, cells were selected with 2 ug/mL
puromycin (GIBCO/Thermo Fisher Scientific; Cat. No. A1113803). After
9 days, cells were harvested for single-cell transcriptome profiling.

Induced pluripotent stem cells
Six million dCas9-VPH iPSCs (same cells as described above) were
transfectedwith the gRNA library and the piggyBac transposase at a 5:1
molar ratio of library:transposase using the Lonza nucleofector and
the Lonza nucleofector CB-150program. The sixmillion cells were split
across 6100 uL nucleofection cartridges, with each individual nucleo-
fection cartridge receiving one million cells and 17.5 ug of total DNA.
After nucleofection, cells were transferred to pre-warmed mTeSr Plus
basaImediumwith ROCK inhibitor in a cell culture flask and incubated
at 37 degrees Celsius. One day after transfection, cells were selected
with 20 ug/mL puromycin (note: the AAVS1-NGN2 construct has a
puromycin resistance cassette on it, so a higher dose of puromycinwas
used to successfully select for cells that received a gRNA in the pre-
sence of an existing puromycin resistance cassette). Media changes
were performed daily (mTeSr Plus basaI medium with ROCK inhibitor
and 10 ug/mL puromycin) for seven days prior to initiating neuron
differentiation (described in “Human iPSC-derived neuronal cell cul-
ture, differentiation, and CRISPRa induction” methods section).

10x genomics sc-RNA-seq with associated gRNA transcript
capture
K562 screen. Cells were harvested and prepared into single-cell sus-
pensions following the 10x Genomics Single Cell Protocols Cell Pre-
paration Guide (Manual part number CG00053, Rev C). Four lanes
were used for the single-cell transcriptome profiling, with two lanes
containing cells from the K562-VP64 cell line, and two lanes containing
cells from the K562-VPR cell line. Roughly 10,000 cells were captured
per lane of a 10× Chromium chip (Next GEM Chip G) using Chromium
Next GEM Single Cell 3ʹ Reagent Kits v3.1 with Feature Barcoding
technology for CRISPR Screening (10× Genomics, Inc, Document
number CG000205, Rev D).

iPSC-derived neuron screen
iPSC-derived neurons were harvested and prepared into single-cell
suspensions following a published protocol47. Cells were split into two
batches, with one batch going through a fluorescence-activated cell
sorting (FACS) step to sort on the top 40%of green fluorescent protein
(GFP) expression to enrich for neuronswith greater numbers of gRNAs
integrated, and the second batch going directly into the 10× Genomics
single-cell library preparation protocol. Sorting on the top 40% of GFP
expression resulted in a two-fold increase in the mean number of
gRNAs integrated in those cells as compared to unsorted cells. Four
lanes were used for the single-cell transcriptome profiling, with two
lanes containing GFP-positive sorted cells, and two lanes containing

unsorted cells. Roughly 13,000 cells were captured per lane of a 10×
Chromium high-throughput chip (Next GEMChipM) using Chromium
Next GEM Single Cell 3’HT Reagent Kits v3.1 (Dual Index) with Feature
Barcode technology for CRISPR Screening (10× Genomics, Inc, Docu-
ment number CG000418, Rev C).

Sequencingof scRNA-seq libraries. Final librarieswere sequencedon
an Illumina NextSeq 2000 P3 100 cycle kit (R1:28 I1:10, I2:10, R2:90) for
each screen (K562 and iPSC-derived neuron screens). Gene expression
and gRNA transcript libraries were pooled at a 4:1 ratio for sequencing.

Transcriptome data processing and quality control filtering for
K562 and iPSC-derived neuron screens
CellRanger version 6.0.1 was used to perform bcl2fastq and count
matrix generation. CellRanger mkfastq was run using default para-
meters, and CellRanger count was run using the GRCh38-3.0.0 refer-
ence transcriptome from 10× Genomics and default parameters. For
the K562 screen, cells with greater than 10% mitochondrial reads and
less than 4000UMIs were filtered out. For the iPSC-derived neuron
screen, cells with greater than 17% mitochondrial reads and less than
1500 unique molecular identifiers (UMIs) were filtered out. After
quality control filtering, 33,944 cells were retained in the K562 screen,
and 51,183 cells were retained in the iPSC-derived neuron screen. The
resulting count matrix output after this filtering was used for all
downstream analyses.

Neuron differentiation transcriptome projection. Single-cell tran-
scriptomedata froma time course studyof iPSC-derivedneurons28was
downloaded from https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-10632 (Accession No. E-MTAB-10632, matrices_time-
course.tar.gz), and integrated with the neuron CRISPRa screening
dataset described here. Seurat v4 was used for all data analyses48. The
CRISPRa dataset was randomly downsampled to 5000 cells for this
analysis. Count matrices from both matrices were filtered to include
only shared genes from the two datasets (n = 14,777 genes). SelectIn-
tegrationFeatures() and FindIntegrationAnchors() were run using
default parameters to identify anchors for integration. 20,606 anchors
were found and 2953 anchors were retained for data integration.
IntegrateData() was run using the retained 2953 anchors to integrate
the two datasets. After integration, standard Seurat single-cell analysis
was performed to scale the data, and run the PCA and UMAP
algorithms.

gRNA assignment and differential gene expression testing
Genomic coordinates (hg38) forfinal gRNA spacerswere isolatedusing
a loop built around the matchPattern() function from the BSgenome
package49. A 2Mb window (1Mb upstream and downstream) around
each gRNA was then calculated and all genes within the 2Mb window
were isolated using a loop built around ENSEMBL biomaRt getBM()
function50,51. These 1Mb neighboring gene sets were then filtered to
unique entries (unique HGNC symbols) for compatibility with the
Seurat FindMarkers() function used in DE testing.

A global UMI filter of 5 gRNA UMIs/cell was used to assign gRNAs
to single cell transcriptomes for both K562 and iPSC-derived neuron
datasets (note this heuristic threshold was chosen based on manual
inspection of the UMI count distributions for each gRNA and prior
work)2. gRNA UMI counts for each cell were derived from the count
matrix of passing cells output by CellRanger (which applies an auto-
matic total UMI threshold to cells) and which also passed QC.

In our original approach, expressionof a given genewithin 1Mbof
the gRNAof interest was compared between all cells with a given gRNA
and all other cells as control. log2() fold changes in expression for a
given gene were calculated using the Seurat FindMarkers() function
with the following arguments: ident.1 = gRNA_Cells, ident. 2 = Con-
trol_Cells, min.pct = 0, min.cells.feature = 0, min.cells.group =0,
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features = target_gene, logfc.threshold = 0. A Wilcoxon rank-sum test
was used to generate rawdifferential expression P-values. This process
was then iterated for all genes within 1Mb of all gRNAs. NTCs were
tested against all genes within 1Mb of any targeting gRNA. Only tests
involving genes detected in >0.2% of test gRNA and control cells were
carried forward.

These raw differential expression P-values were then used to cal-
culate empirical P-values to call EFDR <0.1 sets2. Specifically, an
empirical P-value was calculated for each gRNA-gene test as:

½ðthe number of NTCs with a P � value lower than that test’srawP � valueÞ+ 1�=
½the total number of NTC tests + 1�

Empirical P-values were then Benjamini-Hochberg corrected, and
those <0.1 were kept for 10% EFDR sets.

With SCEPTRE, count matrices and associated metadata were
used to construct a single cell covariate matrix with gRNA and gene
expression library size (total UMIs), unique genes (non-zero expres-
sion in gRNA and gene expression libraries), cell line (in the case of
K562 cells with differing CRISPRa effectors), whether cells were GFP
sorted prior to profiling, 10X lane, and percent mitochondrial reads
input as covariates during model fitting. A global UMI filter of 5 gRNA
UMIs per cell was used to assign gRNAs to single cell transcriptomes.
The run_sceptre_highmoi_experimental() function was used to run
calibration (NTC) and discovery (tests) with default parameters (e.g.
two-tailed, >7 targeting and control cells with non-zero expression).
Each individual gRNA was tested against all neighboring genes within
1Mb. NTCs were tested against all genes within 1Mb of a targeting
gRNA. NTCs were randomly downsampled to match the number of
targeting cis tests for visualization on QQ plots. Resulting SCEPTRE
P-valueswere then Benjamini-Hochberg corrected and those <0.1 were
kept for two-sided discovery sets.

Log2 fold changes between gRNA and control cells were visua-
lized using the gviz package52 along with tracks for RefSeq transcripts
(ENSEMBL biomaRt), H3K27ac, and ATAC seq peaks. The K562 ATAC
and H3K27ac data were downloaded from ENCODE53. ATAC-seq and
H3K27ac CUT&RUN data from 7–8 week old NGN2-iPSC inducible
excitatory neurons was obtained from Song et al. 54. As previously
described, ATAC-seq and CUT&RUN reads were trimmed to 50 bp
using TrimGalore with the command –hardtrim5 50 before alignment
(https://github.com/FelixKrueger/TrimGalore). ATAC-seq reads were
realigned to hg38 using the standard Encode Consortium ATAC-seq
and ChIP-seq pipelines respectively with default settings and pseudo
replicate generation turned off. Trimmed, sorted, duplicate and chrM
removed ATAC-seq bam files from multiple biological replicates were
combined into a single bamfile using samtoolsmerge v1.1055. Trimmed
CUT&RUN readswere realigned tohg38usingBowtie2 v2.3.5.1 with the
following settings –local –very-sensitive-local –no-mixed –no-dis-
cordant -I 10 -X 700 and output sam files were convert to bam format
using samtools view55,56. Duplicated reads were removed from the
CUT&RUN bam file using Picard MarkDuplicates v2.26.0 with the
–REMOVE_DUPLICATES =true and –ASSUME_SORTED=true options
(http://broadinstitute.github.io/picard/). Finally, bam files were con-
verted using the bedtools genomecov followed by the UCSC bed-
GraphToBigWig utility.

For correlations of epigenetic features with CRISPRa hits, epige-
netic feature datasets were downloaded from ENCODE or corre-
sponding primary publications (datasets listed in Supplementary
Data 8). Whether a gRNA was a SCEPTRE hit (Benjamini-
Hochberg–adjusted SCEPTRE P-value < 0.1) was treated as a catego-
rical input variable for Spearman correlations with epigenetic features
quantified in 100bp windows at the gRNA target sites. Similarly, var-
ious gRNAmetrics (e.g. GCcontent) or gene levelmetrics (e.g. baseline
expression) were previously quantified, either as part of the gRNA
design process or gRNA assignment and differential expression testing

frameworks (described above) and tested for association with
hit gRNAs.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The
experiments were not randomized though by design allocation of
gRNAs to individual cells is not programmed. The Investigators were
not blinded to allocation during experiments and outcome assess-
ment. Detailed statistical tests and quantitative treatment of data are
otherwisedescribed in the relevantResults orMethods sections above.
No data were excluded from the analyses.

Singleton replication and validations with bulk RNA-sequencing
To replicate and validate a gRNA’s ability to upregulate its target gene
outside of the pooled screening format, we generated individual,
polyclonal cell lines that each expressed a single gRNA from a chosen
representative set of gRNAs (Supplementary Data 15). This repre-
sentative gRNA set was chosen to validate gRNAs that upregulate their
targets in a cell-type specific manner (TBR1 is neuron-specific; ASIC1
and ANXA1 are enhancer targeting gRNAs that are K562-specific) and
to validate promoter targeting gRNAs that are able to upregulate their
targets in both cell types (e.g. BCL11A, TCF4, and FOXP1). gRNAs were
ordered in two Oligo Pools (Integrated DNA Technologies), with each
gRNAbearing a unique handle sequence thatwasused touniquely PCR
amplify out individual gRNA oligos (Supplementary Data 15). gRNAs
were individually cloned into the piggyFlex vector exactly as described
in the “gRNA library cloning into piggyFlex vector” methods section
above, with the only difference being that the 10N barcode was not
included in the oligo design for these validation oligos. After cloning,
the gRNA sequences in the piggyFlex vectorswere sequenceverified to
ensure correct insertion of the gRNA sequences.

PiggyFlex constructs containing gRNA sequences were trans-
fected into K562 cells and iPSCs with the Lonza 4D nucleofector (using
the K562 protocol for K562 cells, and the CB-150 program for the
iPSCs). 525 ng of total DNA (using a 5:1 molar ratio of piggyFlex vector
and transposase vector) was transfected into three replicates of
30,000 cells each. After transfection, cells were seeded into 48-well
plates for culture. One day later, 2 ug/mL (for K562 cells) and 20ug/mL
(for iPSCs) puromycin (GIBCO/Thermo Fisher Scientific; Cat. No.
A1113803) was added to the cultures to select for successfully trans-
fected cells. Daily media changes were performed (with puromycin) to
continually select cells for seven days. After seven days of selection,
K562 cells were lysed with TRIzol (Invitrogen, Cat. No. 15596026).
Sampleswere frozen in TRIzol reagent at −20C, andRNAwas extracted
using the Direct-zol RNA miniprep kit (Zymo Research, Cat. No.
R2050). After puromycin selection, iPSCs were differentiated into
neurons exactly as described in the “Human iPSC-derived neuronal cell
culture, differentiation, and CRISPRa induction” section. iPSC-derived
neurons were differentiated for eight days prior to TRIzol lysis and
RNA extraction as described above for K562 cells.

RNA-sequencing libraries were prepared using an in-house library
preparation method. 30–50ng of RNA was used as input for each
library. RNA was reverse transcribed using indexed oligo dT primers
(ACGACGCTCTTCCGATCTNNNNNNNNAGAGAACTTGTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTVN), template switching oligo (AAGCAGTG
GTATCAACGCAGAGTGAATGGG), and Template Switching RT Enzyme
Mix protocol from NEB (New Engand Biolabs, Cat. No. #M0466L).
cDNA was PCR amplified using the NEBNext High-Fidelity 2X PCR
Master Mix (New England Biolabs, Cat. No. M0541) with the following
forward and reverse primers: ACGACGCTCTTCCGATC (forward),
AAGCAGTGGTATCAACGCA (reverse). SYBR Green (Thermo Fisher
Scientific, Cat. No. S7567) was added to track the amplification curve
and proper PCR cycle number. PCR amplified cDNA was purified with
1X AMPure beads (Beckman Coulter, Cat. No. A63882), washed twice
with 70% ethanol, eluted in 20 uL of nuclease-free water and loaded on
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an Agilent Tapestation using D5000 reagents (Agilent Technologies,
Cat. No. 5067-5589) and the corresponding screentape (Agilent
Technologies, Cat. No. 5067-5588). 30–50ng of purified PCR amplified
cDNA was fragmented using an i7 loaded Tn5 transposase similar to
the process described by Cao et al. 41. To load the transposase, we
followed the manufacturer’s protocol to load unloaded transposase
(Diagenode, Cat. No. C01070010-20). Tagmented DNA was PCR
amplified using NEBNext High-Fidelity 2X PCR Master Mix (New Eng-
land Biolabs, Cat. No. M0541) with indexed primers (CAAGCAGAA-
GACGGCATACGAGATNNNNNNNNNNGTCTCGTGGGCTCGG and
AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNA-
CACTCTTTCCCTACACGACGCTCTTCCGATCT) following previously
described PCR conditions by Cao et al. 41. This PCR adds sample-
specific indices and P5 and P7 Illumina sequencing adapters. Libraries
were cleaned using a 1X AMPure bead cleanup (Beckman Coulter, Cat.
No. A63882), and quantified on an Agilent TapeStation using D1000
reagents (Agilent, Cat. No. 5067-5583) and the corresponding screen-
tape (Agilent, Cat. No. 5067-5582). For sequencing, libraries were
diluted to 2 nM and pooled equimolarly, and then diluted to a loading
concentration of 650pM. Libraries were sequenced on an Illumina
NextSeq 2000using P1 100 cycle kits (R1: 18, I1:10, I2: 10 (optional), and
R2:110). Transcript and gene-level quantifications were performed
using kallisto57. Prior to transcript quantification, reads were down-
sampled to the minimum number of reads observed for a sample to
control for differences in sequencing depth. DESeq258 was used to
quantify expression changes for all genes within 1Mb of the gRNA
target site and genome wide. Genome-wide differential analyses were
conducted using default parameters. Target gene expression was
compared between gRNA cells and control cells using a two-tailed
Wilcoxon rank-sum test with a significance threshold of 0.1 (mirroring
single-cell analysis framework described above). Gviz was used to
visualize differential expression testing results alongside tracks for
neighboring genes (ENSEMBL biomaRt) as described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data have been uploaded to the Sequence Read
Archive with associated BioProject ID PRJNA1157910. Additionally, the
raw data, processed data, and corresponding metadata are have been
deposited to the IGVF database under accession codes
IGVFDS9078ZWQH and IGVFDS4021XJLW. These are also available
at[https://krishna.gs.washington.edu/content/members/CRISPRa_
QTL_website/public/]. Published data used: GSE170378, GSM733656,
GSE113483. Source data are provided with this paper.

Code availability
All code and scripts used for analyses are all publicly available and are
accessible on Github via the following link [https://github.com/
shendurelab/multiplex_scCRISPRa_screening] or at [https://krishna.
gs.washington.edu/content/members/CRISPRa_QTL_website/public/].
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