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SUMMARY
E3 ubiquitin ligases (E3s) confer specificity of protein degradation through ubiquitination of substrate pro-
teins. Yet, the vast majority of the >600 human E3s have no known substrates. To identify proteolytic E3-sub-
strate pairs at scale, we developed combinatorial mapping of E3 targets (COMET), a framework for testing the
role of many E3s in degrading many candidate substrates within a single experiment. We applied COMET to
SCF ubiquitin ligase subunits that mediate degradation of target substrates (6,716 F-box-ORF [open reading
frame] combinations) and E3s that degrade short-lived transcription factors (TFs) (26,028 E3-TF combina-
tions). Our data suggest that many E3-substrate relationships are complex rather than 1:1 associations.
Finally, we leverage deep learning to predict the structural basis of E3-substrate interactions and probe
the strengths and limits of such models. Looking forward, we consider the practicality of transposing this
framework, i.e., computational structural prediction of all possible E3-substrate interactions, followed by
multiplex experimental validation.
INTRODUCTION

Rapid and precise control of cellular protein levels permits cells

to regulate their homeostatic state1 and to respond to changing

environments.2 Such control of intracellular protein degradation

is mediated by the ubiquitin-proteasome system (UPS). Ubiqui-

tination is a post-translational covalent modification that can

serve roles in transcription, DNA repair, and signaling. However,

it is most deeply understood as a mark for degradation by the

UPS. The UPS mediates protein degradation via E3 ubiquitin li-

gases (E3s), which provide specificity of degradation by select-

ing specific substrate proteins.3 Although there are >600 human

E3s,4 the target substrate(s) for the vast majority of E3s remain

unknown, partly due to the challenging biochemistry and limited

scalability of methods for assessing E3-substrate pairs.

E3-substrate interactions are dynamic, and substrates may be

rapidly degraded upon ubiquitination.5,6 Some high-throughput

methods to identify E3 targets have been developed, most

notably global protein stability (GPS) profiling,7 which leverages

a dual-fluorescent reporter to quantify protein abundance on a
Molecular Cell 85, 1–14, Febru
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proteome-wide scale. GPS has been applied to identify sub-

strates of the cullin-RING ligase (CRL) family of E3s, multi-sub-

unit ubiquitin ligases with an interchangeable substrate receptor

for modular target specificity.8 Each GPS experiment relies on a

single perturbation that broadly inhibits CRL function, e.g., over-

expression of dominant-negative cullin fragments or drug-medi-

ated inhibition of the entire proteolysis pathway. A consequence

is that GPS lacks specificity to determine the contribution of in-

dividual CRL subunits to substrate degradation. With >600 E3s

and�20,000 possible substrates per E3, these limitations curtail

the potential of GPS to comprehensively dissect the landscape

of proteolytic regulation in human cells.

RESULTS

A combinatorial screening method for detecting target
substrates of E3 ligases
We sought to develop a high-throughput method for screening

combinatorial libraries of E3 perturbations and potential sub-

strates. To this end,we adopted aGPS-inspired dual-fluorescent
ary 20, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Combinatorial mapping of E3 ubiquitin ligases to their target substrates

(A) Schematic of COMET construct.

(B) Schematic of COMET library where each plasmid represents a unique gRNA-ORF combination.

(C) Cells harboring integrated COMET libraries are sorted on the ratio of GFP:mCherry. Amplicon sequencing of gRNA-barcode pairs measures the relative

abundance of perturbation-ORF pairs in each of the four bins.

(D) Illustrative distributions of read counts across 4 FACS bins for an E3-regulated substrate (top) and a non-regulated substrate (bottom).
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reporter9 expressing a GFP-fusion protein, which represents the

putative ligase substrate, and an mCherry reporter translated

from an internal ribosome entry site (IRES) (Figure 1A). Expres-

sion of the GFP-IRES-mCherry is controlled by the doxycy-

cline-inducible tetracycline response element (TRE). Since the

GFP-fusion and mCherry are co-expressed, the GFP:mCherry

ratio, hereafter referred to as ‘‘protein abundance,’’ reflects the

stability of the GFP-fusion protein to degradation. To multiplex

this assay, we sequentially clone DNA libraries of E3-targeting

CRISPR guide RNAs (gRNAs), human open reading frames

(ORFs), and an ORF-linked DNA barcode (Figures S1A–S1F). A

combinatorial mapping of E3 targets (COMET) plasmid pool con-

tains thousands of gRNA-ORF pairs, with each pair representing

a potential E3-substrate interaction (Figure 1B).

To facilitate multiplex screening, we generated monoclonal

HEK293 and K562 cell lines constitutively expressing reverse

tetracycline-controlled transcriptional activator (rtTA) and

Cas9, hereafter termed HEK293-rtTA-Cas9 and K562-rtTA-

Cas9 (Figures S1G and S1H). The COMET library is integrated

into cells at low multiplicity of integration (MOI), such that each

cell reports on the abundance of a specific ORF in the presence

of a specific gRNA (Figure 1C). These cells are sorted using fluo-

rescence-activated cell sorting (FACS) into equal-partition bins

based on the GFP:mCherry ratio. Amplicon sequencing is used

to quantify gRNA-ORF pairs in each bin. For any given ORF,

the read distribution across bins can be compared between cells

bearing non-targeting control (NTC) vs. E3-targeting gRNAs,

with differences indicating perturbation of that E3 impacts the
2 Molecular Cell 85, 1–14, February 20, 2025
protein-level abundance of that ORF (Figure 1D). In principle,

this strategy enables many-by-many testing of E3-sub-

strate pairs.

Applying COMET to F-box proteins and SCF-linked
substrates
For proof-of-concept, we focused on the well-characterized

SCF complex8 (Figure 2A). The SCF is the founding member of

the CRL superfamily of multi-subunit E3s and is composed of

a CUL1 scaffold upon which the rest of the complex is assem-

bled. RBX1 and a ubiquitin-charged E2 bind the C terminus of

CUL1, while the N terminus is occupied by an adaptor protein,

SKP1, that mediates interactions with �70 F-box proteins.10

Importantly, the SCF is a modular protein degradation system.

F-box proteins are interchangeable, with each recruiting a

unique set of substrates for ubiquitination, thus diversifying

and specifying SCF substrate ubiquitination.

To scalably identify which F-box proteinsmediate degradation

of which substrates, we cloned a COMET library (Figure 2B) in

which each plasmid encodes: (1) an F-box-targeting gRNA, (2)

a candidate substrate-GFP-fusion ORF, and (3) an ORF-linked

DNA barcode. We targeted 68 F-box genes,10 core SCF compo-

nents (CUL1, SKP1, and RBX1), and SCF regulators (NEDD8 and

CAND1), with 3 gRNAs per gene, and also included 23 NTC

gRNAs. For candidate substrates, we selected 30 proteins pre-

viously annotated as SCF substrates,7 along with 62 randomly

chosen proteins that were neither annotated SCF substrates

nor previously tested. The 92 candidate substrates had variable



Figure 2. Robust measurement of baseline

protein abundance with COMET

(A) Schematic of SCF E3 ubiquitin ligase complex.

(B) Schematic of combinatorial library of F-box-

targeting gRNAs and ORFs.

(C) Examples of ORFswith consistently low (left) or

high (right) abundance as estimated by the distri-

bution of their barcodes across FACS bins.

(D) Pairwise comparison of PSI between experi-

mental transfection replicates. Pearson’s R

shown.

(E) Validation of COMET-based PSI values with

individually measured GFP:mCherry ratios for

indicated proteins. Histograms display the FACS-

measured GFP:mCherry ratio of cells. PSI values

shown on the right are derived fromCOMET, while

MFI values reflect individually measured

GFP:mCherry ratios. All data in this figure are

generated from K562 cells.
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endogenous expression levels in K562 cells (Figures S2A and

S2C). The resulting library contains 6,716 F-box-ORF combina-

tions (or 242 gRNA 3 92 ORF = 22,264 barcoded constructs).

Sequencing was used to generate a lookup table of barcode-

ORF pairs (Table S1). 88% of the ORFs in the library had >300

barcodes, and 92% of barcodes had >90% of their reads asso-

ciated with a single ORF (Figures S3A and S3B).

The SCF COMET library was integrated via piggyBac11 trans-

position into either HEK293-rtTA-Cas9 or K562-rtTA-Cas9 cells

(day 0). Cells with integrated constructs were selected with pu-

romycin. Expression of the ORF-GFP-IRES-mCherry reporter

was induced with doxycycline on day 10, and cells were sorted

into four equally partitioned bins based on the GFP:mCherry ra-

tio on day 12. Genomic DNA was isolated from each bin, from

which the gRNA-barcode region was PCR amplified and

sequenced to track gRNA-ORF pair proportions across the

four bins.

Robust measurement of baseline protein abundance
To evaluate whether our assay reliably measured baseline pro-

tein abundances, we focused on data generated from K562 cells

and calculated a protein stability index (PSI) as previously
Molec
described7,12 (Table S2). The resulting

PSI is a weighted average representing

the mean bin position of each gRNA-

ORF pair, with values ranging from 1

(maximally unstable) to 4 (maximally

stable).

We first focused on ORFs paired with

NTC gRNAs (i.e., unperturbed). The

ORFs for BNIP3, CDC25A, FBXL14, and

SLC29A3 paired with NTC gRNAs reliably

had >75% of their reads falling in the low

abundance bin (Figure 2C). By contrast,

the ORFs for DNPEP, PTDSS1, TFEB,

and UMPS paired with NTC gRNAs had

>75% of their reads in the high abun-

dance bin (Figure 2C). The PSIs of NTC
gRNA-ORF pairs were highly reproducible (Pearson’s R > 0.9

for all pairwise comparisons; Figure 2D).

As COMET is a pooled experiment, we sought to validate pro-

tein abundance measurements with individually cloned ORFs. In

these experiments, COMET-based PSI values correctly pre-

dicted the order of individually assayed protein stabilities (Fig-

ure 2E) and were highly correlated with mean-fluorescence in-

tensity (MFI) of the GFP:mCherry ratio (Pearson’s R = 0.98;

Figure S3E). Altogether, these results show that COMET repro-

ducibly measures protein abundanceswithin the rangewhere ef-

fects from altered protein abundance are anticipated to be

detected.

Identification of known ligase-substrate interactions
We next sought to test our ability to detect E3 perturbations that

stabilize specific substrates. We separately examined data from

HEK293 or K562 cells for differences in PSI distribution for each

ORF paired with F-box-targeting gRNAs vs. NTC gRNAs, which

we term DPSI (PSItargeting-PSINTC; Figures S3C and S3D). After

filtering for poorly represented gRNA-barcode or gRNA-ORF

pairs, we identified 75 and 74 E3-substrate combinations whose

PSI was significantly increased in HEK293 and K562 cells,
ular Cell 85, 1–14, February 20, 2025 3
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respectively (p < 0.05; tests are two-sided t test unless otherwise

stated; p values were corrected using the Benjamini-Hochberg

method; Table S3).

Focusing first on well-established E3-substrate pairs that we

had included in the experiment, we successfully identified the

founding F-box family member CCNF as controlling the abun-

dance of SLBP,13 in both HEK293 (DPSI = 0.23; p < 6e–6) and

K562 (DPSI = 0.47; p < 6e–13) cells. Knockout of FBXW7 also

increased the abundance of TP53 in K562 cells (DPSI = 0.50;

p < 2e–3), a pairing that has been described under physiological

conditions.14 To visualize these effects, we plotted distributions

of PSIs calculated at the barcode-guide level (Figure 3A). This

confirms that the shifts in PSI distributions for SLBP and TP53,

when paired with NTC vs. CCNF- or FBXW7-targeting gRNAs,

are not driven by outlier barcodes. Further, PSI increases for

SLBP and TP53 were consistent across four transfection repli-

cates and across different targeting gRNAs (Figures 3B and

3C). Finally, we individually cloned SLBP and TP53 ORFs into

the COMET reporter and integrated the construct in K562-

Cas9-rtTA cells. Transfection of SLBP or TP53 reporter cells

with gRNA plasmids targeting CCNF or FBXW7 resulted in a

1.8- and 1.7-fold increase in the mean GFP:mCherry ratio,

respectively (Figure 3D).

Reproducibility within and between cell lines

For each cell line, we arbitrarily collapsed reads from four inde-

pendent transfection replicates to two replicates and recalcu-

lated p values and DPSIs. There were 57 (HEK293) and 126

(K562) E3-substrate pairs that were significant in one or both rep-

licates. TheDPSI values of pairs that were significant in both rep-

licates were highly consistent (green points; Figures S4A and

S4B; Pearson’s R = 0.97 and 0.98 for HEK293 and K562, respec-

tively). Finally, considering all pairs that were significant in either

replicate, we observe concordant direction of effects (HEK293:

55/57; p < 2e–14; K562: 124/126; p < 3e–16; binomial test).

We next examined the consistency of effects between cell

lines. Across both HEK293 and K562 experiments, 209 unique

E3-substrate pairs significantly shifted DPSI values either posi-

tively or negatively, with 46/209 pairs achieving significance in

both cell lines (Figures 3E and 3F). Direction of effects was over-

whelmingly concordant for shared significant associations

(green points in Figure 3E; 45/46; p < 7e–13, binomial test; 19 de-

stabilizing, 26 stabilizing). This directional concordance

extended to pairs that were significant in only one cell line (or-

ange [HEK293] and blue [K562] points in Figure 3E; 124/163;

p < 1e–11, binomial test). Furthermore, the overlap in hits be-

tween cell lines was highly significant (p < 1e–78, hypergeomet-

ric test; Figure 3G). These patterns suggest that a larger propor-

tion of the 209 pairs are shared and might have been called as

significant in both cell lines with greater experimental power.

In both HEK293 and K562, we observed a clear excess of sig-

nificant p values (Figure 3H), including numerous perturbation-

ORF pairs discussed above that result in a significant PSI in-

crease (HEK293: 75; K562: 74). Surprisingly, however, we also

observed many perturbation-ORF pairs that resulted in a signif-

icant PSI decrease (HEK293: 36; K562: 109). Assuming all effects

are direct and E3 ligases are solely destabilizing, knocking out an

E3 is only expected to increase the abundance of its target sub-

strate, such that this is difficult to explain.
4 Molecular Cell 85, 1–14, February 20, 2025
The majority of destabilizing pairs involved two ORFs,

CTNNBIP1 (HEK293: 13; K562: 38) and SERINC3 (HEK293: 8;

K562: 36). What might explain their recurrent destabilization?

Multi-subunit E3s, such as the SCF, are dynamic complexes

that exist in an equilibrium in which substrate receptors and sub-

strates are constantly exchanged. It is possible that knockout of

one substrate receptor disrupts this equilibrium, leading to

increased degradation of particular substrates. As our statistical

tests detect differences between the means of the NTC and tar-

geting gRNA PSI distributions, another possibility is that DNA

damage caused by Cas9 double-strand breaks (DSBs) leads to

a cellular environment in which CTNNBIP1 and SERINC3 are

degraded.

We reasoned that if gain-in-activity of an untargeted substrate

receptor underlies the recurrent destabilization of CTNNBIP1

and SERINC3, then these might share a common E3 knockout

that stabilizes their abundance. Intriguingly, CTNNBIP1 and

SERINC3 are stabilized by knockout of FBXW7 in K562 cells

(as is SERINC3 in HEK293T cells). FBXW7 is a transcriptional

target of the p53 TF.15 p53 has a well-studied role as a regulator

of the DNA-damage-repair pathway,16 with p53 protein levels

increasing in response to DNA damage. This suggests a mech-

anism in which the CRISPR-Cas9 DSBs leveraged by COMET

to disrupt E3s leads to p53-mediated increases in FBXW7

levels and consequent degradation of the FBXW7 substrates

CTNNBIP1 and SERINC3. On the other hand, we note that com-

mon SCF component knockouts (NEDD8, SKP1, and RBX1) are

three of the four most significant hits for these two ORFs, in the

destabilizing direction. This supports an alternative hypothesis in

which the SCF plays a direct or indirect role in stabilizing these

two ORFs (and possibly other ORFs).

Features of potential ligase-substrate interactions

Among the 75 significantly destabilizing F-box-ORF pairs in

HEK293 cells, there were 26 unique ORFs, of which 16 (62%)

are established SCF substrates. Considering only 30/92 ORFs

in this experiment were previously SCF-linked, this represents

a 1.9-fold enrichment (p < 6e–6, hypergeometric test). We

observed a similar result in K562 cells (26 unique ORFs among

74 destabilizing pairs, 17 (65%) of which are established SCF

substrates; 2.0-fold enrichment; p < 5e–6, hypergeometric test).

Although previously implicated as SCF substrates by GPS,7

the F-box proteins responsible for their degradation were largely

unknown since this information is not recoverable from a GPS

experiment. Each of these ORFs was, on average, associated

with multiple perturbations (mean 2.9 [HEK293] and 2.8

[K562]). ORFs associated with 3+ perturbations were dominated

by previously annotated SCF substrates (HEK293: 11/14; K562:

9/9). Because previous GPS experiments utilized a dominant-

negative CUL1 fragment, our results suggest screens utilizing

such fragments are biased toward recovering substrates sur-

veilled by many individual F-boxes.

Degradation of these ORFs wasmediated by 22 (HEK293) and

24 (K562) unique F-box or core SCF component proteins. Core

SCF components RBX1 and SKP1, and the SCF regulator

NEDD8, were recurrently implicated, often paired with sub-

strates with additional F-box hits. For example, in K562 cells,

we found CKS1B PSIs were increased when any one of the

core SCF components (CUL1, SKP1, and RBX1) or the CRL



Figure 3. COMET identifies F-box substrate receptors for previously annotated SCF substrates

(A) Violin plots of PSI for SLBP (top) and TP53 (bottom) in presence of NTC or targeting gRNAs for F-box genes CCNF (top) or FBXW7 (bottom).

(B) Line plots of NTC-normalized PSIs in each of four independent transfection replicates, as in (A) for CCNF-SLBP (top) and FBXW7-TP53 (bottom).

(C) Violin plots of mean PSIs in presence of NTC or three distinct gRNAs, as in (A) for CCNF-SLBP (top) and FBXW7-TP53 (bottom).

(D) Flow cytometry validation of CCNF-SLBP (top) and FBXW7-TP53 (bottom) effects. NTC-normalized mean GFP-mCherry ratios are shown. Error bars

correspond to standard error.

(E) Comparison of DPSI estimates between HEK293 vs. K562. Pearson’s R calculated based on subset of interactions that are significant in either or both

cell lines.

(F) Volcano plot of DPSI vs. p values in HEK293 (left) or K562 (right). Points colored based on whether the corresponding E3-substrate pair was significant in

HEK293 (orange), K562 (blue), both (green), or neither (gray) cell line.

(G) Overlap of significant associations between HEK293 and K562 experiments. Significance of overlap calculated with hypergeometric test.

(H) Quantile-quantile plots from the HEK293 (left) or K562 (right) showing enrichment of measured p values for both significant (yellow) and nonsignificant (blue)

targeting gRNAs or NTC gRNAs (gray) over the null distribution of p values (dashed line).

(I) Schematic of potential mechanism of GATA2/GATA1 switch regulation by FBXO7.
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regulator, NEDD8, was knocked out, or an additional 7 F-box

substrate receptors.

Onemight have predicted knocking out core complex compo-

nents would have resulted in more substrate associations or

perhaps a superset of associations. Of the 26 ORFs with at least

one significant, stabilizing association in K562 cells, only 8 had at

least one significant CUL1, SKP1, RBX1, or NEDD8 hit. However,

this paucity could be due in part to insufficient power conse-

quent to the highly essential functions of these core SCF compo-

nents. This interpretation is supported by our observation that

targeting of SKP1, RBX1, NEDD8, or CUL1 was underrepre-

sented among gRNAs recovered from gDNA in both cell lines

(Figures S4C, S4D, S4F, and S4G). However, it is challenging

to conclusively interpret a lack of an association because these

potential false negatives may also be attributable to unknown

factors, such as buffering effects of residual protein or subunit

redundancy.

FBXW7 was the most recurrently observed F-box protein

among K562 hits, paired with many cell-cycle-related proteins

(e.g., CDK2AP1, CDK4, CDKN1A, and CKS1B), consistent with

the known role of FBXW7 as a tumor suppressor. In our data,

FBXW7 knockout resulted in stabilization of GATA2, a key regu-

lator of hematopoiesis.17 While an association between FBXW7

and GATA2 has been previously reported,18 our results suggest

GATA2 may be degraded by two additional F-box proteins,

FBXL16 and FBXO7. GATA2 auto-regulates its own expression

during early hematopoiesis, eventually being displaced by

GATA1 (‘‘GATA switching’’), leading to repression of GATA2

expression and the installation of gene expression programs

that drive erythropoiesis. GATA factor switching is driven at least

partially by the drastic difference in half-lives for GATA1 (>4 h)

and GATA2 (�1 h).19 Interestingly, a genome-wide association

study associated FBXO7 variants with red blood cell pheno-

types, specifically an increase in mean cell hemoglobin.20

Further, an Fbxo7-knockout mouse model exhibited impaired

erythropoiesis and anemia with increased mean cell hemoglobin

concentration.21 We hypothesize that FBXO7-mediated GATA2

degradation enhances GATA switching by reducing GATA2

abundance and facilitating GATA1-driven erythropoiesis (Fig-

ure 3I, left). Reduction or loss of FBXO7 may impair the ability

of GATA1 to displace GATA2, leading to impaired erythropoiesis

(Figure 3I, right).

Massively parallel testing for E3 ligases that surveil TFs
with short half-lives
Our results with GATA2 led us to wonder whether proteolytic

degradation of short-lived TFs is a general phenomenon. Regu-

lation of gene expression by TF proteolysis is well-established

yet understudied,22–24 with therapeutic implications as E3-TF in-

teractions can be pharmacologically targeted for stabiliza-

tion25,26 or abrogation.27 Leveraging a recent study that identi-

fied short-lived proteins (half-life % 8 h) across a range of cell

types,28 we focused on 108 TFs and sought to ask whether their

rapid turnover was attributable to proteasomal degradation and,

if so, via which E3s (Figure 4A). Endogenous expression of these

TFs in K562 cells was variable (Figures S2B and S2D).

While our initial experiment focused on perturbing F-boxes,

we expanded the scope of our gRNA library to 723 gRNAs tar-
6 Molecular Cell 85, 1–14, February 20, 2025
geting 241 genes encoding components of the seven CRL fam-

ilies (SCF, CRL2, CRL3, CRL4A, CRL4B, CRL5, and CRL7) and

the anaphase-promoting complex (APC/C) ubiquitin ligase,

supplemented with 50 NTC gRNAs. Altogether, we cloned a

COMET library with 83,484 (773 gRNA 3 108 ORFs) barcoded

constructs and integrated these to K562-Cas9-rtTA cells

(Figure 4B).

At 48 h after reporter expression induction, cells were sorted

based on the GFP:mCherry ratio, genomic DNA was isolated

from each of four FACS bins, and the gRNA-barcode region

was amplified and sequenced. Testing for significantly altered

PSI distributions was performed as previously, revealing 9 TFs

whose abundances were significantly increased by 13 ligase

perturbations. Similar to the SCF-focused experiments, read

proportions for gRNAs targeting CRL subunits were significantly

different from all other gRNAs in the pool (Figures S4E and S4H).

This phenomenon is less pronounced in the TF screen, which

may be attributable to its expanded scale leading to less power

to detect fitness effects and/or to the inclusion of more non-

essential CRL subunits.

We identified PTTG1 and SOX9 as stabilized upon knockout of

FZR1, a subunit of APC/C, a multi-subunit protein assembly29

that controls cell-cycle progression by degrading cell-cycle

proteins such as cyclin B30 and PTTG131 (Securin) (Figure 4C),

supporting the former and suggesting the latter as APC/C sub-

strates, results we validated in singleton experiments. We vali-

dated these results in singleton experiments (Figure 4D). The

APC/C is known to recognize its protein substrates through

linear degradation motifs called degrons, including the D-box32

(RxxL) and KEN-box33 (KEN) motifs. There are two canonical

APC/C coactivators responsible for APC/C substrate recogni-

tion, CDH1 (encoded by FZR1) and CDC20. Although

PTTG1 was stabilized by knockout of FZR1, we did not detect

a significant stabilization of PTTG1 following knockout of

CDC20 (DPSI = 0.15, p = 0.49).

The PTTG1-encoding ORF used in our screen has an N-termi-

nal KEN-box and a more centrally located D-box; however, the

SOX9 ORF contains only a D-box. It is thought that degrons

occur in disordered regions of substrate proteins.34 However,

the putative SOX9 D-box degron occurs in a highly structured

alpha-helix within the DNA-binding domain. SOX9 is known to

contain two nuclear-localization signals35 (NLSs) and one nu-

clear-export signal36 (NES). Interestingly, the SOX9 D-box

directly overlaps one of these NLS signals, suggesting APC/C

may serve to not only degrade SOX9 but also to alter SOX9

localization.

A quantile-quantile plot again showed an excess of signal

for targeting gRNAs (Figure 4E). As previously, upon recalcu-

lating DPSIs on independent pairs of replicates, we observe

strong reproducibility for both the directionality and magnitude

of significant DPSI values (Pearson’s R = 0.93; 200/207 direc-

tionally concordant; Figure 4F). Compared with our SCF-

focused proof-of-concept, this scaled screen identified rela-

tively few E3 perturbations that stabilize substrate abundance,

with the PSIs of only 9 substrates increasing in response to 13

E3 perturbations (Figures 4G and 4H). This could result from

having fewer test proteins with a priori evidence of being an

E3 substrate, as well as reduced power due to this screen



Figure 4. Screening for CRLs that degrade short-lived TFs

(A) Schematic of experiment identifying short-lived TFs.28

(B) Schematic of application of COMET to these TFs.

(C) PSI distributions for PTTG1 (top) and SOX9 (bottom) when paired with NTC or FZR1-targeting gRNAs.

(D) Validation of FZR1 knockout effects in PTTG1 and SOX9 reporter cell lines by flow cytometry. NTC-normalized mean GFP-mCherry ratios are shown. Error

bars correspond to standard error.

(E) Quantile-quantile plot showing enrichment of measured p values for targeting (yellow and blue points) or NTC gRNAs (gray points) over the null distribution of

p values (dashed line).

(F) Reproducibility of DPSI estimates. For this analysis, reads from two pairs of independent transfection replicates were combined into replicates A and B, and

DPSIs and significance were recalculated separately for each. Points colored based on whether corresponding E3-ORF pair was significant in replicate A (blue),

replicate B (red), or both (green) or involves an NTC gRNA (gray). Pearson correlation calculated based on subset of interactions significant in replicate A and/or

replicate B.

(G) Lollipop plot of 9 ORFs observed among 18 significant, positive interactions.

(H) Lollipop plot of 13 E3 perturbations observed among 18 significant, positive interactions.
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being more complex (83,484 rather than 22,264 barcoded

constructs).

Once again, we also observed destabilizing effects, including

5 ORFs (ZNF593, CDKN2A, SLBP, TFAP4, and TCEAL8) asso-

ciated with R25 destabilizing perturbations and 7 ligases that,

when knocked out, destabilized R10 ORFs (DCAF7, ELOC,

SKP2, WDR5, ASB16, SKP1, and VHL). Recurrently destabi-

lized ORFs may be sensitive to DSBs from Cas9 or some other

general indirect interaction. Recurrently destabilizing perturba-

tions may indicate a general role for the corresponding compo-

nents in protein stabilization. For example, although WDR5 was

included in our list of multi-subunit CRLs, it is better recog-

nized as a core component of COMPASS complexes,37 sug-
gesting that COMPASS complexes may serve to stabilize

certain TFs.

Classifying the landscape of ligase-substrate
interactions
We sought to ask whether any general patterns could be dis-

cerned in the distribution of E3-substrate interactions. For this

analysis, associations involving core ligase components such

as RBX1 or cullin scaffolds were excluded. Filtering further

for significant, stabilizing associations (p < 0.05, DPSI > 0),

COMET-associated 48 E3s (SCF: 37, TF: 11) with 51 substrates

(SCF: 42, TF: 9) for a total of 103 interactions across both

experiments (SCF: 87, TF:16). We enumerated four classes of
Molecular Cell 85, 1–14, February 20, 2025 7



ll
OPEN ACCESS Article

Please cite this article in press as: Suiter et al., Combinatorial mapping of E3 ubiquitin ligases to their target substrates, Molecular Cell (2025), https://
doi.org/10.1016/j.molcel.2025.01.016
E3-substrate relationships: one-to-one, many-to-one, one-to-

many, and many-to-many. For example, in our SCF HEK293

dataset, FBXW7 regulates 18 substrates, including TP53, which

itself is regulated by a single ligase, and so the interaction be-

tween FBXW7 and TP53 is categorized as many-to-one. With

the caveat that we focused on only CRLs and did not test all

possible substrates in our screens, we find examples of each

class in each experiment (Table S4; Figure S5). Although we

have not yet tested all E3s against all potential substrates, these

results give us a preliminary sense for the connectivity of the pro-

teolytic regulatory network.

Computational assessment of COMET-nominated E3-
substrate interactions
COMET nominates E3-substrate pairs for which one-by-one

experimental validation (e.g., by co-immunoprecipitation) would

be challenging to scale and potentially to interpret due to tech-

nical confounders (e.g., transient E3-substrate interactions or

substrate degradation). As a more scalable means of orthogonal

assessment, we turned to AlphaFold-Multimer,38,39 computing

models for (1) all 103 significantly stabilizing COMET-nominated

E3-substrate pairs (class: ‘‘COMET-linked’’); (2) as negative con-

trols, 1,000 nonsignificant E3-substrate pairs randomly selected

from the sets tested in our COMET experiments (class: ‘‘screen-

negative’’); (3) as additional negative controls, 1,000 pairs ob-

tained by randomly sampling the canonical isoforms of all human

proteins (class: ‘‘true-random’’); and (4) as positive controls, we

extracted 1,000 E3-protein pairs from the BioPlex40 dataset

(class: ‘‘BioPlex’’), which is a proteome-scale map of experimen-

tally derived protein-protein interactions generated via affinity-

purification mass spectrometry.

Altogether, we modeled 3,103 protein-protein pairs with

AlphaFold-Multimer, with 5 individual models per pair for a to-

tal of 15,515 unique models. To systematically evaluate sup-

port for a given interaction, we extracted interchain contacts

from each model. Interchain contacts were defined based on

the following criteria: (1) a maximum distance of 5 Å between

any two atoms in the interacting residues, (2) a predicted

aligned error (PAE) of R10 for each residue pair involved in

the contact, and (3) a predicted local distance difference

test (pLDDT) score of R50 for both residues. This strategy

was adapted from a recent AlphaFold-Multimer-based in silico

screen.41

Two metrics were calculated to summarize model quality: (1)

inverse normalized PAE: the mean PAE for all contacts of each

individual model was calculated. These values were min-max

normalized across all four prediction classes and inverted such

that 0 corresponds to the lowest and 1 to the highest PAE values.

(2) Normalized contact consistency: we summarized contact

consistency as the average number of models each contact

was observed in (range 1–5), similarly normalizing these values

such that 0 corresponds to the lowest and 1 to the highest con-

tact consistency. Plotting these metrics revealed a subset of

models exhibiting high confidence and consistency in the

COMET-linked and BioPlex classes but not the screen-negative

or true-random classes (Figures 5A–5D; note there are 10-fold

fewer models in COMET-linked class than each control class).

We also calculated a summary score that gave equal weights
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to confidence and consistency metrics, ranging from 0 (worst)

to 1 (best). Encouragingly, summary score distributions for the

COMET-linked and BioPlex classes were significantly higher

than both negative control classes (Figure 5E).

We visualized a cumulative density function for each predic-

tion class and heuristically set a requirement that at least 2 of

the 5 models for a given protein pair pass a threshold summary

score of 0.4 to be considered supported (Figure 5F). 16.5%

(17/103) of COMET-nominated pairs met these requirements,

which is 1.3-fold higher than the BioPlex pairs (12.3%, 123/

1,000), 2.8-fold higher than the screen-negative pairs (5.8%,

58/1,000), and 5.2-fold higher than the true-random pairs

(3.2%, 32/1,000). In summary, the odds of COMET-nominated

pairs accruing AlphaFold-Multimer support were similar to E3-

protein pairs from BioPlex (p < 3e–1, OR = 0.7, 95% CI = 0.4–

1.3) and significantly greater than either screen-negative con-

trols (p < 3e–4, odds ratio [OR] = 3.2, 95% CI = 1.7–5.9, Fisher’s

exact test) or true-random controls (p < 5e–7, OR = 6.0, 95%CI =

3.0–11.6, Fisher’s exact test) (Figure 5G).

Visualization of in silico models of E3-substrate
interactions
We next sought to examine selected AlphaFold-Multimer-

derived models of COMET-nominated E3-substrate interactions

in more detail, beginning with the well-established interaction of

PTTG1 (Securin) and the APC/C adapter protein FZR1. As dis-

cussed above, FZR1 interacts with its substrates via degrons

such as the KEN-box and D-box (RXXL) motifs. PTTG1, a known

FZR1 substrate, contains KEN-box (residues 9–11) and more

central D-box (RKAL, residues 61–64) motifs. To investigate

this interaction further, we used AlphaFold to fold PTTG1 without

FZR1 (Figure 6A; red curve). The resulting pLDDT values varied

greatly across the protein but were unremarkable near the

KEN-box and D-box motifs. However, when we fold PTTG1

with FZR1 via AlphaFold-Multimer, we observe two striking in-

creases in local pLDDT values that precisely coincide with the

degrons (Figure 6A; blue curve). Furthermore, computational

substrate-E3 co-folding induced a reduction of pLDDT values

in all regions outside of these degrons. This result suggests the

potential for co-folding of substrates with their cognate E3s to

result in (relatively) increased model confidence localized to de-

gron motifs, i.e., presumably corresponding to E3 engagement

with the degron(s).

We also examined three COMET-nominated E3-substrate in-

teractions that are previously undescribed, supported by struc-

tural modeling, and exhibit coincident patterns with respect to

co-folding confidence and putative degron locations. In the first

of these, we folded SOX12 with vs. without its COMET-associ-

ated E3, AMBRA1. Once again, we observe a relative jump in

the pLDDT complex/monomer ratio, in this case, a narrow C-ter-

minal region, suggesting this region may correspond to a degron

(Figure 6B). SOX12 and AMBRA1 have not been shown previ-

ously to interact. However, AMBRA1 was recently shown to

recognize its various cyclin D substrates through a conserved

TP motif,42 and the AlphaFold-Multimer model contains a TP

motif at the center of the putative degron (Figures S6E and

S6F). Interestingly, this putative degron (residues 282–304)

also overlaps themajority of the SOX12 transcriptional activation



Figure 5. AlphaFold-Multimer modeling of COMET-nominated E3-substrate interactions
(A) Scatterplot of inverse normalized average PAE values plotted against the normalized average number of contacts per residue for the 103 COMET-nominated

E3-substrate AlphaFold-Multimer predictions. Each point represents a single model. White points indicate models with a summary score R 0.4. Black points

represent models with a summary score %0.4.

(B) Same as in (A), but for 1,000 E3-protein pairs from BioPlex.

(C) Same as in (A), but for 1,000 nonsignificant E3-substrate pairs randomly sampled from those tested in COMET experiments.

(D) Same as in (A), but for 1,000 randomly sampled protein-protein pairs randomly sampled from the human proteome.

(E) Violin plot showing distribution of summary scores for COMET-nominated (blue), BioPlex (gray), screen-negative (orange), or true-random (green) prediction

classes. Significance calculated using Wilcoxon rank sum test.

(F) Cumulative density function showing proportion of models exceeding range of summary score thresholds for each of the four prediction classes. Vertical black

line indicates the summary score threshold (0.4) that we used.

(G) Barplot of proportion of complexes with R2 models passing the summary score threshold for each prediction class. Significance was calculated using

Fisher’s exact test, and p values are adjusted with the Benjamini-Hochberg procedure.
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domain (residues 283–315), consistent with the observation that

degron motifs within TFs often overlap the transcriptional activa-

tion domain.24

The third example involves the cyclin-dependent kinase inhib-

itor CDKN1A and F-box protein FBXW5 (Figure 6C). Here, the

CDKN1A peptide predicted to be bound by FBXW5 was confi-

dently predicted even when CDKN1A is modeled on its own (Fig-

ure 6C). Although the pLDDT values around the predicted inter-

acting region are not increased as in the previous two examples,

the range of high-confidence pLDDT values is narrowed upon

co-folding. As previously mentioned, CDKN1A functions as a cy-

clin-dependent kinase inhibitor. Cyclins interact with their bind-

ing partners through Cy motifs (e.g., RxL or RxI) on the partner

protein. CDKN1A contains one N-terminal (RRL, residues

19–21) and one C-terminal (RRL, residues 155–157) Cy motif.

The C-terminal Cy motif is just outside of the predicted interact-

ing region, raising the possibility that FBXW5 may sequester

CDKN1A or otherwise compete for binding with other CDKN1A

interactors. Beyond our experimental and computational associ-

ation of FBXW5 to the cell-cycle-related CDKN1A, FBXW5 has

previously been shown to degrade other cell-cycle proteins
such as the centriole assembly factor SAS-643 and the actin

regulator EPS8.44

The fourth example involves APBB1IP and FBXO21. Similar to

the CDKN1A-FBXW5 interaction, the putative APBB1IP degron

(residues 139–154) exhibited consistently high pLDDT values in

themonomer prediction (Figure 6D). However, the pLDDT values

of the predicted interacting residues decreased following upon

co-folding with FBXO21. Of note, the putative APBB1IP degron

is the only example presented here that is structured, and this

suggests co-folding partially disrupts the predicted secondary

structure of this region, leading to the observed decrease in

pLDDT. A previous study demonstrated that FBXO21 is respon-

sible for degrading the short-lived protein EID145 and mapped

the minimal EID1 degron to residues 160–172. Alignment of

APBB1IP residues 1–37 notably revealed two APBB1IP residues

(F12 and L16) were conservedwith EID1 and its paralog, EID2, as

well as two semi-conserved, hydrophobic residues (L21 and

L22) (Figures S6G and S6H). Plots visualizing PAE values for

each of the above examples are provided in Figures S6A–S6D.

To test whether AlphaFold-Multimer-nominated degrons

mediate degradation in an E3-specific manner, we cloned a
Molecular Cell 85, 1–14, February 20, 2025 9



Figure 6. Computational models of E3-substrate interactions

(Top) Visualizations of FZR1-PTTG1 (A), AMBRA1-SOX12 (B), FBXW5-CDKN1A (C), and FBXO21-APBB1IP (D) modeling are presented. E3-substrate pairs were

folded together with AlphaFold-Multimer, and interacting substrate peptides are highlighted. (Middle) Line plots of pLDDT values across the substrate protein are

visualized in the context of a folded substrate monomer (red) or the substrate co-folded with the COMET-nominated E3 (blue). Finally, the log2-scaled ratio

(monomer/complex) of pLDDT values at each residue is plotted, with peaks indicating regions of elevated pLDDT values in the complex prediction relative to the

monomer. Note that scales for log2 ratios are different in each panel, i.e., adjusted for each plot to maximize contrast.
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series of reporters expressing full-length substrate proteins or

their putative degrons fused to GFP, integrated these into

HEK293-rtTA-Cas9 cells together with a construct expressing

either an E3-specific or NTC gRNA, andmeasured GFP:mCherry

ratios 14 days post-transfection. Cells co-transfected with con-

structs bearing anN-terminal GFP fusion of PTTG1 and an FZR1-

targeting gRNA exhibited a 1.4-fold increase in their GFP:

mCherry ratio relative to controls (Figure S7A; p = 0.009, one-

sided t test). This ratio was similar when only the degron region

of PTTG1 (residues 1–84) was fused to GFP (1.3-fold increase;

p = 0.018). Splitting the degron into its KEN-box (residues 1–

42) or D-box (residues 42–84) components resulted in no or
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modest (1.1-fold) stabilization, respectively, suggesting both

motifs are required. Cells expressing a C-terminal GFP fusion

of SOX12 and an AMBRA1-targeting gRNA exhibited 1.2-fold

stabilization relative to controls (p = 0.018), while the putative de-

gron region of SOX12 (residues 282–304) did not (0.9-fold of orig-

inal) (Figure S7B). Cells transfected with C-terminal GFP fusions

of full-length CDKN1A or the CDKN1A degron (residues 130–

164) showed no or modest (1.1-fold increase; p = 0.027) sta-

bilization, respectively (Figure S7C), in the presence of an

FBXW5-targeting gRNA. Finally, we tested N-terminal GFP fu-

sions of full-length APBB1IP or the putative APBB1IP degron

(residues 1–40), which strikingly exhibited 1.5-fold (p < 5e–6)



Figure 7. Potential applications of COMET

(A) By linking E3s to their substrates, COMET

advances our understanding of the connectivity

of regulatory networks controlling protein abun-

dance. Visualized are four possible classifications

of E3-substrate relationships based on the num-

ber of interactions.

(B) Individual E3-substrate interactions represent

potential therapeutic targets for either stabilization

or inhibition.

(C) E3-substrate pairs linked via COMET may

provide insights into the mechanisms by which E3

or substrate variants lead to disease phenotypes.

(D) Reciprocal validation of COMET or AlphaFold-

Multimer-nominated E3-substrate interactions.
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and 1.8-fold (p = 0.003) stabilization, respectively, in the pres-

ence of an FBXO21-targeting gRNA (Figure S7D). Although

further investigation into the mechanisms by which these puta-

tive degrons mediate substrate proteolysis is warranted, the

observation of E3-dependent, degron-mediated proteolysis in

several of the cases tested (FZR1-PTTG1, FBXW5-CDKN1A,

and FBXO21-APBB1IP) supports the utility of leveraging Alpha-

Fold-Multimer as a means of degron discovery.

DISCUSSION

Protein degradation is an essential component of cellular regu-

lation, but relatively few relationships between specific E3s and
Molec
specific target substrates are known.

Toward addressing this, we developed

COMET, a combinatorial experimental

framework wherein the consequences

of perturbing many E3 ubiquitin ligases

on the stability of each of many overex-

pressed candidate substrates can be

tested in a single experiment. COMET

is highly scalable, with tens of thousands

of potential E3-substrate pairs assay-

able in a single experiment. In contrast

with GPS screens, which rely on domi-

nant-negative fragments or pharmaco-

logic inhibition, the CRISPR perturba-

tions leveraged by COMET can be

directed at non-CRL, monomeric ubiqui-

tin ligases, e.g., RING, HECT, and RBR

E3s.46 Moreover, although unexplored

in this study, the potential exists to use

CRISPR activation of E3s in COMET

screens.

By expanding the number of experi-

mentally supported E3-substrate interac-

tions, we anticipate that COMET may

advance models of proteolytic regulatory

networks (Figure 7A). Such links may also

be valuable for targeted protein degrada-

tion, e.g., via proteolysis-targeting chi-

meras (PROTACs) or molecular glues
(MGs), which hold great therapeutic promise but are hindered

by the dearth of endogenous E3-substrate interactions, e.g., to

target for stabilization with MGs (Figure 7B). COMET may also

be useful for contextualizing genetic variants in E3s and/or sub-

strates (Figure 7C). As one example, dissecting the genome-

wide association study (GWAS) association of FBXO7 with red

blood cell phenotypes is daunting given that the phenotype

could arise from FBXO7 degrading nearly any substrate

protein. However, the COMET-derived linkage of FBXO7 and

GATA2 suggests a plausible mechanism for the GWAS associa-

tion (Figure 3I). Of note, a recent analysis of 33 cancer types

showed 19% of mutated cancer driver genes affect protein

degradation.47
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Although in principle, COMET makes it possible to test all

possible E3s vs. all possible substrates, library construction

and FACS would undoubtedly become bottlenecks, as testing

241 CRLs vs. �20,000 human genes would require an exp-

eriment 185-fold larger than what we have demonstrated

here. However, this challenge might be eased by upfront OR-

Feome-wide screens to identify bona fide proteasome or CRL

substrates to be tested by COMET. For example, 1,554 proteins

were recently shown to be stabilized by the pan-CRL inhi-

bitor MLN4924, suggesting they are CRL substrates.48 The

comprehensive application of COMET to these substrates

(241 CRLs3 1,554 CRL substrates) would require an experiment

only 14-fold larger than the short-lived TF COMET screen re-

ported here, a challenging but approachable scale.

An alternative would be to invert the current framework (exper-

imental nomination/computational validation) by instead first

identifying candidate E3-substrate pairs through scaling of

deep learning-based modeling to all possible interactions

(computational nomination/experimental validation;Figure7D).

In this scenario, the computational resource requirements would

be dramatically larger, but given the sparseness of the set of true

interactions, experimental validation could likely be achieved in a

single COMET experiment. A limitation is that the false negative

rate of computational modeling of E3-substrate interactions is

not known, but the same could be said of experimental screening

methods.

From a resources perspective, what would this take? Here

we generated AlphaFold-Multimer predictions for 3,103 E3-

substrate pairs (i.e., 103 COMET-linked E3-substrate pairs

and 3,000 control pairs). Each prediction required �1 GPU-h

(mean: 1.8 GPU-h; median: 1 GPU-h), with total compute

time of �157 GPU-days. Although the trade-off between pre-

diction quality and speed could be adjusted, assuming identical

parameters as used here (5 models, 30 recycles, and model

similarity tolerance of 0.5), we estimate modeling interactions

between the �375,000 possible pairs of 241 CRLs and 1,554

CRL substrates would require �43 GPU-years, which is sub-

stantial but certainly not impossible. Expanding this to all

�600 human E3s vs. all �20,000 human proteins (�12 million

pairs) would be more challenging (�1,369 GPU-years), but for

perspective, we note that there are already over 200 million

predictions in the AlphaFold Protein Structure Database (June

2024). Furthermore, predictions reported here were generated

using a combination of Nvidia A100 and L40 GPUs, and simply

switching to faster GPU architectures would likely result in

shorter prediction times.

Here we described COMET, a combinatorial framework for

testing the role of many specific E3s in degrading many specific

substrates within a single experiment and, furthermore, demon-

strated the potential for targeted computational modeling to

provide orthogonal support for experimentally nominated E3-

substrate pairs. However, given the pace at which structural

modeling is improving and computational resources are

scaling, we envision a future in which this framework is in-

verted, and methods like COMET are used for the multiplex

experimental validation of predictions generated by computa-

tional modeling of a vast number of potential interactions

(Figure 7D).
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Limitations of the study
As COMET is a pooled assay, measured abundances are relative

to other proteins in the pool, which makes it challenging to

compare effect sizes between different experiments. This could

potentially be mitigated by including protein spike-ins with

known abundances to facilitate batch correction and/or by ex-

panding the number of FACS bins.

Although our detection of some established E3-substrate

pairs shows COMET can detect effects from directly interacting

partners, it is possible that COMET-nominated E3-substrate

pairs have an indirect relationship, e.g., if a targeted E3 regulates

an untargeted E3 which then regulates a targeted substrate. This

could potentially be mitigated by computational support for a

given interaction or by scaling the screen to target all E3s and

deubiquitinases.

Finally, as with any large-scale screen, there exists the poten-

tial for both false negatives and false positives. False negatives

could arise from insufficient power, ineffective gRNAs, essential-

ity of perturbed genes, substrates that lack the correct post-

translational modifications necessary for ubiquitination, lack of

E3 expression, or masking of degrons near the C terminus by

the EGFP fusion. False positives could arise from non-specific

effects, e.g., off-target events or cellular responses induced by

Cas9-induced DSBs.49
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

NEB 10-beta Electrocompetent E. coli New England Biolabs C3020K

NEB Stable Competent E. coli New England Biolabs C3040H

Chemicals, peptides, and recombinant proteins

RPMI 1640 Medium Gibco 11875119

DMEM, High Glucose Gibco 11965118

FBS Hyclone SH30396.03

Penicillin-Streptomycin (10,000 U/mL) Gibco 15140122

DNeasy Blood & Tissue Kit QIAGEN 69504

AMPure XP Reagent Beckman Coulter Life Sciences A63882

KAPA HiFi HotStart ReadyMix Roche KK2602

KAPA2G Robust HotStart ReadyMix PCR Kit Roche KK5702

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs M0541S

NEBuilder HiFi DNA Assembly Cloning Kit New England Biolabs E5520S

Gateway LR Clonase II Enzyme mix Invitrogen 11791020

Blasticidin S HCl (10 mg/mL) Gibco A1113903

Geneticin Gibco 10131035

Puromycin Dihydrochloride Gibco A1113803

OC-100x2 processing assembly MaxCyte SOC-1x2

SF Cell Line 4D-Nucleofector X Kit Lonza Bioscience V4XC-2012

Lipofectamine 3000 Transfection Reagent Invitrogen L3000001

Tn5 transposase Diagenode C01070010-20

DNA Polymerase I, Large (Klenow) Fragment New England Biolabs M0210S

I-SceI New England Biolabs R0694S

I-CeuI New England Biolabs R0699S

rCutSmart Buffer New England Biolabs B6004S

Recombinant Albumin, Molecular Biology Grade New England Biolabs B9200S

dNTP mix New England Biolabs N0447L

BsmBI-v2 New England Biolabs R0739S

XhoI New England Biolabs R0146S

BamHI-HF New England Biolabs R3136S

NheI-HF New England Biolabs R3131S

MluI-HF New England Biolabs R3198S

Critical commercial assays

NextSeq 1000/2000 P2 Reagents (100 Cycles) Illumina 20046811

NextSeq 1000/2000 P2 Reagents (200 cycles) Illumina 20046812

Deposited data

Sequencing data generated in this study This manuscript GEO: GSE234621

K562 bulk RNA-seq data ENCODE Project Consortium ENCFF186TXT; ENCFF354ODN, ENCFF489VUK;

ENCFF515MUX; ENCFF662LZE; ENCFF728TIT;

ENCFF739YLB; ENCFF764ZIV;

ENCFF930UOM; ENCFF934YBO

Experimental models: Cell lines

K562 ATCC CCL-243

HEK293 ATCC CRL-1573

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

K652-Cas9-rtTA monoclonal line This manuscript N/A

HEK293-Cas9-rtTA monoclonal line This manuscript N/A

Oligonucleotides

List of oligonucleotides This manuscript; Table S5 NA

Recombinant DNA

pCMV-HyPBase Yusa et al. NA

pB-rtTA Addgene #126034

pCCS_11; TRE Promoter donor plasmid;

pUC19-I-SceI-tight-TRE-I-CeuI

This manuscript NA

pCCS_30; Parental COMET backbone;

PB-Puro-U6-Stuffer-Scaffold-

[I-SceI / PI-SceI / I-CeuI]-attR1-

CmR-ccdB-attR2-EGFP-

IRES-mCherry-SV40

This manuscript NA

pCCS_82; Validation Reporter;

PB-Puro-TRE-attR1-CmR-ccdB-

attR2-EGFP-IRES-mCherry-SV40

This manuscript NA

pCCS_103; gRNA expression

plasmid; pB-U6-

BsmBI-Scaffold-Hygro

This manuscript NA

pCCS_196; Degron Validation Reporter;

PB-Puro-TRE-MCS-EGFP-

MCS-IRES-mCherry-SV40

This manuscript NA

Software and algorithms

Bcl2fastq (v2.20) Illumina https://support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-software.html

localcolabfold (1.5.5) Mirdita et al. https://github.com/YoshitakaMo/localcolabfold

AlphaFold (alphafold2_ptm) Jumper et al. https://github.com/google-deepmind/alphafold

AlphaFold-multimer (v3) Evans et al. https://github.com/google-deepmind/alphafold

AF2multimer-analysis Lim et al. https://github.com/walterlab-HMS/AF2multimer-analysis
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and cell culture
K562 (CCL-243) and HEK293 (CRL-1573) cell lines were purchased from ATCC. K562 cells were cultured in RPMI 1640 (Gibco).

HEK293 cells were cultured in DMEM, high glucose (Gibco). All media were supplemented with 10% FBS (Hyclone) and 1% peni-

cillin-streptomycin (Gibco).

METHOD DETAILS

Monoclonal cell line generation
K562 cells or HEK293 cells were transduced with lentiCas9-Blast (Addgene #52962-LV) lentivirus. Beginning 2 days post-transduc-

tion, transduced cells were selected with 10 mg mL-1 Blasticidin S HCl (Gibco, A1113903) for 6 days. The reverse tetracycline trans-

activator was then stably integrated into each polyclonal cell line via piggybac transposition. Polyclonal K562-Cas9 or HEK293-Cas9

were then transfected with 1500 ng of pB-rtTA (Addgene #126034) and 250 ng of transposase expression construct to stably inte-

grate the reverse tetracycline transactivator. For transfection of K562 cells, 1 x 106 K562 cells were nucleofected using a Lonza

4D-Nucleofector. For transfection of HEK293 cells, 1 x 106 HEK293 cells were seeded in individual wells of a 6 well plate; cells

were transfected 1 day post-seeding using Lipofectamine 3000 (Thermo Fisher). Beginning 2 days post-transfection, polyclonal

K652-Cas9-rtTA or HEK293-Cas9-rtTA cell lines were selected with 5 mgmL-1 Blasticidin SHCl and 800 mgmL-1 G418 Sulfate (Gibco)

for 6 days.

Monoclonal K652-Cas9-rtTA and HEK293-Cas9-rtTA cell lines were generated by limiting dilution of selected polyclonal cell pop-

ulations. For each polyclonal cell line, cells were diluted to 5 cells ml-1 in non-selective media without selective antibiotics and 100 mL
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of diluted cells were added to individual wells of a 96well plate and expanded for 14 days. Candidatemonoclonal lineswere screened

for reporter induction and Cas9 activity via transfection of a GFP-IRES-mCherry reporter with either a NTC- or GFP-targeting gRNA

(Figure S1).

Plasmid library cloning

Iterative library cloning strategy. COMET plasmid libraries were cloned in a four-step process (Figure S1). In the first step, libraries of

gRNA spacer sequences are cloned into the COMET backbone. To generate the backbone, pCCS_30 was digested with BsmBI-V2

(NEB) for 6 hours and purified by agarose gel purification (Monarch DNA Gel Extraction Kit, NEB). Spacer sequences targeting E3

ubiquitin ligases of interest were taken from the Brunello CRISPR knockout library50 and ordered as either oPools (IDT) or Oligo Pools

(Twist Bioscience). Single stranded oligonucleotide libraries were diluted to 1 ng/uL and PCR amplified in a reaction containing

100 mL KAPA HiFi master mix (Roche), 1 mL 100 mM oCCS_90, 1 mL 100 mM oCCS_91, 2 mL 100X SYBR Green (Thermo Fisher),

8 mL 1 ng mL-1 oligonucleotide library, and nuclease-free water to 200 mL. Libraries were amplified with cycling parameters of

3 minutes at 95 �C followed by 12 cycles of 20 seconds at 98 �C, 15 seconds at 63.5 �C and 15 seconds at 72 �C. PCR products

were cleaned upwith a DNAClean andConcentrator kit (Zymo) and subsequently Gibson assembled (NEBuilder HiFi DNAAssembly,

NEB) into BsmBI-digested pCCS_30 using a 5:1 insert:backbonemolar ratio at 50 �C for 30minutes. Gibson assembly products were

then cleaned up with a Clean and Concentrator kit, eluted in 6 mL water, and electroporated into ccdB Survival Escherichia coli

(Thermo Fisher). Electrocompetent ccdB Survival cells were prepared in-house as an electrocompetent version of this strain is

not commercially available. 1% of the electroporation was serially diluted and plated onto LB agar plates with ampicillin to quantify

the number of transformants and ensure adequate library complexity. The remaining volume of electroporation was added to 100mL

of liquid LB media supplemented with 100 mg mL-1 ampicillin and cultured at 37 �C for 16 hours. Library plasmid DNA was then iso-

lated (ZymoPURE II Plasmid Midiprep Kit) and used as input for the next round of cloning.

The second cloning step introduces libraries of open reading frames (ORFs) into the COMET library via Gateway cloning (Thermo

Fisher). Gateway entry clones encoding ORFs of interest were obtained from DNASU. A Gateway reaction consisting of 28 mL 20 ng

mL-1 Gateway entry clones, 4 mL 150 ng mL-1 COMET library DNA, 8 mL Gateway LR clonase (Thermo Fisher), and water to 40 mL was

incubated at 25 �C for 16 hours. The reaction was stopped by addition of 2 mL Proteinase K (Thermo Fisher) to the reaction and incu-

bating at 37 �C for 10 minutes, after which the library was cleaned up with a Clean and Concentrator kit, eluted in 6 mL water, electro-

porated into Escherichia coli (NEB, C3020), cultured at 37 �C for 16 hours, and plasmid DNAwas then extracted. As before, 1%of the

electroporation was serially diluted to enumerate transformants.

Next, the library was barcoded with a 25-mer degenerate barcode. The COMET backbone containing gRNAs and ORFs was di-

gested in a reaction containing 12 mL I-SceI (NEB), 12 mL I-CeuI (NEB), 4 mL rAlbumin (NEB), 20 mL 10XCutSmart Buffer (NEB), 20 mg of

vector, and water to 200 mL, incubated at 37 �C for 6 hours and purified by agarose gel purification. A DNA fragment containing a

25-mer random barcode was generated by mixing 1 mL 100 mM oCCS_440, 1 mL 100 mM oCCS_441, 4 mL NEBuffer 2.1, and water

to 40 uL. To anneal oligos this mix was heated to 95 �C for 3 minutes and then cooled to 22 �C at a ramp rate of 0.1 �C per second.

Annealed oligos were extended by adding 1 mL Klenow (NEB M0210S) and 1 mL 10 mM dNTPs (NEB) followed by a 20 minute incu-

bation at 25 �C, after which the barcoded DNA fragment was cleaned with a Clean and Concentrator kit and Gibson assembled at

50 �C for 30 minutes using a 5:1 insert:backbone molar ratio. The Gibson product was cleaned up with a Clean and Concentrator kit,

eluted in 6 mL water, and electroporated into Escherichia coli (NEB, C3020) which were cultured at 37 �C for 16 hours. 1% of the elec-

troporation was serially diluted to enumerate transformants. Plasmid DNAwas extracted and used as input for the final round of clon-

ing. This plasmid DNA was also used for barcode subassembly, details of which are described in the Subassembly of ORF-barcode

pairs section below.

The final step of the COMET cloning workflow introduces a tetracycline response element (TRE) promoter into the library. The

COMET backbone containing gRNAs, ORFs, and barcodes was digested for 6 hours at 37 �C in a reaction containing 15 mL

I-SceI (NEB), 12 mL 10X CutSmart buffer (NEB), 12 mg of vector, and water to 120 mL and purified by agarose gel purification. An am-

plicon containing the TRE promoter was amplified from pCCS_11 in a reaction containing 25 mL KAPA HiFi master mix (Roche), 1 mL

10 mMoCCS_456, 1 mL 10 mMoCCS_457, 5 mL 10X SYBRGreen, and 1 mL 1 ng mL-1 pCCS_11, and nuclease-free water to 50 mL with

cycling parameters of 3 minutes at 95 �C followed by 16 cycles of 20 seconds at 98 �C, 15 seconds at 70 �C and 60 seconds at 72 �C.
The PCR product was cleaned up with a Clean and Concentrator kit, Gibson assembled at 50 �C for 30 minutes using a 5:1 insert:-

backbone molar ratio, cleaned up with a Clean and Concentrator kit, eluted in 6 mL water, and electroporated into Escherichia coli

(NEB, C3020) which were cultured at 37 �C for 16 hours. 1% of the electroporation was serially diluted to enumerate transformants.

Plasmid DNA was extracted and used for stable integration into cells.

Subassembly of ORF-barcode pairs. Plasmid libraries with gRNAs, barcodes, and ORFs were tagmented with N5-loaded Tn5

transposase (Diagenode) in a reaction containing 100 mL 2x tagmentation buffer (Diagenode), 80 mL 2.5 ng mL-1 plasmid DNA,

3 mL 1.25 mMN5-loaded Tn5 transposase, and water to 200 mL with incubation conditions of 55 �C for 5 minutes and 10 �C for 10 mi-

nutes. Tagmented plasmid DNA was cleaned up with a Clean and Concentrator kit, eluted in 54 uL of water which was input into a

PCR reaction containing a primer (oCCS_473) that hybridizes upstream of the barcode region and a primer (for example oCCS_P5_1)

that hybridizes the tagmentation event and appends an Illumina sequencing index aswell as the P5 sequencing adapter. The reaction

contained 54 uL tagmented DNA, 850 mL NEBNext High-Fidelity 2X PCRMaster Mix (NEB, M0541S), 85 mL 10 mM oCCS_473, 85 mL

10 uMP5 indexing primer (for example oCCS_P5_1), 170 mL 10X SYBRGreen, andwater to 1700 mL. This master mix was distributed

into 34 wells of a 96 well PCR plate with 50 mL per well and amplified with cycling parameters of 5 minutes at 72 �C, 30 seconds at
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98 �C followed by 10 cycles of 10 seconds at 98 �C, 30 seconds at 68 �C and 60 seconds at 72 �C. The PCR product was cleaned up

using 0.8X AMPure XP Beads (Beckman Coulter), eluted in 100 mL of Buffer EB (Qiagen), and Illumina sequencing indexes were

added in a second PCR reaction consisting of 85 mL 1st round PCR product, 850 mL of 2x NEBNext master mix, 85 mL 10 mM of

the same P5 indexing primer from round 1 (for example oCCS_P5_1), 85 mL of P7 indexing primer (for example oCCS_P7_1),

170 mL of 10X SYBRGreen, andwater to 1700 mLwith cycling parameters of 30 seconds at 98 �C followed by 10 cycles of 10 seconds

at 98 �C, 30 seconds at 63 �C and 60 seconds at 72 �C. The PCR product was cleaned up using 0.8X AMPure XP Beads, eluted in

100 mL of Buffer EB. 20 uL of eluted product were run on a pre-cast 6% TBE polyacrylamide gel (Thermo Fisher), and DNA fragments

ranging in size from 400-1000 base pairs were excised from the gel and purified. The resulting library was quantified and sequenced

on an Illumina instrument.

Selection of short-lived transcription factors. Transcription factors with short half-lives were identified from a proteome-widemap of

short-lived proteins.28 Briefly, this study applied multiplex mass spectrometry to four widely used human cell lines (HEK293T, U2OS,

RPE1, HCT116) treated with the translation-inhibiting drug cyclohexamide (CHX) (Figure 4A). Using this approach, 1,017 proteins

were identified as short-lived (half-life% 8 hours) in at least one of the four cell lines tested. From this list of 1,017 short lived proteins,

we retrieved all proteins that have evidence of being a transcription factor. This resulted in a set of 108 TFs that we then tested in the

short-lived transcription factor COMET screen,

Screens

Library transposition and cell culture. COMET libraries were integrated into the genome of monoclonal K562-rtTA-Cas9 or mono-

clonal HEK293-rtTA-Cas9 cells by piggyBac transposition. In each experiment we conducted four biological replicates in parallel. For

each replicate on day 0, 20 x 106 cells were electroporated with 10 mg COMET library and 6 mg of transposase expression construct

on aMaxCyte STX instrument using cell line specific (i.e. K562 or HEK293) electroporation programs. On day 2 cells were selected in

media containing 2 mg mL-1 puromycin (Gibco) to select for cells containing COMET library plasmids. Cells were passaged such that

500X coverage of the library was maintained. Expression of COMET reporter constructs was induced on day 10 via addition of 1 ug

mL-1 doxycycline to the media and cells were sorted on day 12.

Flow cytometry. Cells were sorted on a BD FACSAria II or a BD FACSymphony S6 (Becton, Dickinson). Cells were gated from all

events followed by gating on single cells. From the population of single cells, mCherry positive cells were gated, and a GFP:mCherry

ratio parameter was created and applied to this population. A histogram of GFP:mCherry ratio was created and gates were drawn

that divided the histogram into four equally partitioned bins containing approximately 24%of the gated population. Cells were sorted

into four bins based on theGFP:mCherry ratio (low to highGFP:mCherry), and 100X coverage of the library complexity was sorted per

biological replicate in each experiment. Sorted cells from each of the four bins were centrifuged and stored as pellets.

Generation of gRNA-barcode Illumina amplicons. Genomic DNA (gDNA) was extracted from pellets of frozen cells using a DNEasy

Blood and Tissue kit (Qiagen). Illumina amplicons containing gRNA and barcode information were amplified from gDNA using two

rounds of PCR. In the first round of PCR, an amplicon containing DNA barcodes and gRNA spacer sequences was amplified from

the gDNA. All genomic DNA isolated from cells from each FACS bin was divided into 24 individual 50 uL PCR reactions consisting

of 25 mL KAPA2G Robust HotStart ReadyMix (Roche), 0.25 mL 100 mM oCCS_495, 0.25 mL 100 mM oCCS_496, 0.5 mL 100X SYBR

Green, 8 mL gDNA, and 16 mL of water with cycling parameters of 3 minutes at 95 �C followed by 23 cycles of 15 seconds at 95 �C, 15
seconds at 59 �Cand 60 seconds at 72 �C. The PCRproduct was cleaned up using 1X AMPure XP Beads and eluted in 20 mL of Buffer

EB per well of which 2.5 uL was used as input for a second round of PCR. The second round of PCR appended Illumina sequencing

adapters and consisted of 2.5 mL of 1st round PCR product, 2.5 mL 10 mMP5 indexing primer (for example oCCS_P5_1), 2.5 mL 10 mM

P7 indexing primer (for example oCCS_P7_1), 25 mL 2x NEBNext master mix, 0.5 mL 100X SYBR Green, and water to 50 mL with

cycling parameters of 30 seconds at 98 �C followed by 5 cycles of 10 seconds at 98 �C, 30 seconds at 63 �C and 15 seconds at

72 �C. The PCR product was cleaned up using 1X AMPure XP Beads, eluted in 18 mL of Buffer EB. 5 uL of eluted product from

each sample was pooled into a single sample and sequenced on an Illumina instrument.

Individual hit validation. Entry clones encoding putative substrates of interest were recombined via a Gateway LR reaction into

pCCS_82. A Gateway reaction consisting of 7 mL 20 ng mL-1 entry clone, 1 mL 150 ng mL-1 pCCS_82, 2 mL LR Clonase II (Thermo

Fisher) was incubated for 1 hour at 25 �C, terminated by adding 2 mL Proteinase K (Thermo Fisher) and incubating at 37 �C for 1 mi-

nutes, and transformed into Escherichia coli (Stellar cells, Takara, 636763). gRNAs targeting E3s of interest were PCR amplified with

oCCS_90 and oCCS_91 using the same protocol as described in the library cloningmethod and subsequently Gibson assembled into

BsmBI digested pCCS_103, which is a gRNA expression vector with a Hygromycin selection marker.

Stable polyclonal reporter lineswere generated for each individual ORF by nucleofection of K562-Cas9-rtTA cells with 1 mg of ORF-

EGFP-IRES-mCherry reporter construct and 500 ng of pCMV-hyPBase.11 2 days post-transfection, integrated cells were selected

using 2 ug/mL puromycin for an additional 6 days.

In order to test the effect of individual E3 knockout on substrate abundance, cells expressing individual ORF-EGFP-IRES-mCherry

reporters were transfected in triplicate with 750 ng of gRNA expression plasmid that contained a single unique gRNA

sequence (either E3-specific gRNA or an NTC gRNA) along with 100 ng transposase expression construct. Cells were selected

with 200 ug uL-1 Hygromycin B (Gibco) 2 days post-transfection and the EGFP:mCherry ratio was measured 8 days following trans-

fection of the gRNA expression plasmid.

For the assessment of AlphaFold-Multimer nominated degrons, putative substrate degron regions were cloned into pCCS_196,

which is a version of pCCS_82 where the Gateway cloning cassette was removed and multi-cloning sites were added at the 50
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and 30 ends of the EGFP coding sequence. To clone degron sequences at theN terminus of EGFP, pCCS_196was digestedwith XhoI

(NEB) and BamHI-HF (NEB) and the linearized backbone was purified by agarose gel purification (Monarch DNA Gel Extraction Kit,

NEB). To clone degron sequences at the C terminus of EGFP, pCCS_196 was digested with NheI-HF (NEB) and MluI-HF (NEB) and

the linearized backbone was purified by agarose gel purification (Monarch DNA Gel Extraction Kit, NEB). DNA fragments encoding

the putative degron regions were synthesized (gBlocks; IDT) with appropriate 50 and 30 homology to the digested backbone. These

fragments were Gibson assembled into digested backbone (NEBuilder HiFi DNA Assembly, NEB) and transformed into Escherichia

coli (NEB, C3040).

pCCS_196 degron reporters were then tested in cells using the same workflow described for the pCCS_82 reporter described at

the top of this section.

Bioinformatic analyses

ORF-barcode subassembly. In order to associate ORFs to DNA barcodes, sequencing libraries were prepared from barcoded

COMET libraries (see ‘‘Subassembly of ORF-barcode pairs’’ section above). Reads from tagmented COMET libraries were aligned

toORF sequences using bowtie2 v2.2.5 to determine whichORFwas tagged. A custom bowtie2 index of ORF sequences was gener-

ated and aligned against. A summary output format of the data was then generated that included the read name, the degenerate

barcode sequence, the bowtie2-determined tagged ORF and the mapping quality of the read, which was then used as input for

further QC to determine the list of BC-associated ORFs.

The initial list of barcodes andORFswere filtered to exclude reads with amapping quality score less than 31, barcodes that include

any ‘N’ bases, and barcodes associated with common sequencing error modes (e.g., GGGGGGGGGGGGGGGGGGGGGGGGG).

We then eliminated barcodes with fewer than 10 reads of supporting evidence, which guards against seemingly unique barcodes

that actually include rarely occurring sequencing errors. Ambiguous barcodes were eliminated which mapped to more than one

ORF, however, these were included if there was one ORF with more than 90% of the read evidence supporting one barcode. The

remaining barcode-ORF pairs were then used to identify the ORF on a plasmid relying on the sequencing of just the barcode

(Table S1).

Processing barcode-gRNA sequencing data. Amplicon sequencing reads of gDNA extracted from cells sorted by GFP:mCherry

ratio contain two important pieces of information: the sequenced gRNA along with a barcode that was previously associated with

a specific ORF. As a first step, we convert the raw read data into a summary output format that includes ORF (determined with

the previously generated barcode-ORF lookup table), the target identity of the sequenced gRNA, along with the raw sequencing in-

formation of the barcode and guide. Summary output files from libraries generated from different conditions and sorted bins are then

combined into one file that is then used for statistical analysis.

Screen analysis. The number of reads corresponding to each gRNA-barcode pair in each FACS bin and replicate were summed and

used to calculate a Protein Stability Index (PSI) value for each pair (Table S2). PSI attempts to quantify the mean bin position for a

gRNA-barcode pair by multiplying the bin number by the proportion of reads in that bin. The PSI ranges from 1 (low abundance)

to 4 (high abundance).

After PSIs were computed per gRNA-barcode pair for each condition and replicate, we used a standard t-test to compare the dis-

tribution of PSI values between an ORF with a specific gRNA to the ORF with a non-targeting control gRNA. This test quantifies

changes in PSI values per ORF explained by knockout of the targeted gene. To avoid additional variability of constructs with low rep-

resentation, we filtered constructs with fewer than 50 reads per guide-barcode in the SCF experiment. For the short half-life TF exper-

iment we filtered constructs with fewer than 100 reads per guide-barcode. Additionally, we removed ORF-target pairs with less than

15 barcodes to ensure sufficient observations for statistical testing. Finally, we also tested the effect of non-targeting control gRNAs

on PSI distribution to estimate a null p-value distribution. We used Bonferroni and Benjamini-Hochberg approaches for multiple hy-

pothesis correction and reported both values along with the raw p-value (Table S3). Significance was determined using the

Benjamini-Hochberg corrected p-values.

Analysis of E3 ubiquitin ligase expression in K562. Files containing bulk poly-A RNA sequencing gene quantifications were down-

loaded from ENCODE51 (files ENCFF186TXT, ENCFF354ODN, ENCFF489VUK, ENCFF515MUX, ENCFF662LZE, ENCFF728TIT,

ENCFF739YLB, ENCFF764ZIV, ENCFF930UOM, ENCFF934YBO). Gene quantifications for ubiquitin ligase components of interest

were subset from the dataframe and ordered based on median FPKM (Figure S7).

AlphaFold-Multimer E3-substrate modeling. All computational protein models were run using a local installation of localcolabfold52

(https://github.com/YoshitakaMo/localcolabfold). E3-substrate pairs were modeled with Alphafold-Multimer (v3) using the –model-

type alphafold2_multimer_v3 flag and monomers were modeled with Alphafold2 using the –model-type alphafold2_ptm flag. The

early stop tolerance was set to 0.5. Five models were generated with the number of recycles set to 30. Each model was then ranked

by interface pTM (ipTM) to select the highest confidence model. Models were then AMBER relaxed for more accurate side chain pre-

dictions. Predicted models were visualized with ChimeraX.

Note on selection of E3-protein pairs from the BioPlex dataset. To obtain a large number of candidate E3-protein pairs with evi-

dence of a physical interaction, we turned to the BioPlex dataset,40 a proteome-scale map of experimentally derived protein-protein

interactions generated via affinity-purification mass spectrometry. We specifically utilized the HEK293T dataset consisting of

118,162 PPIs. A list 568 E3s53 was used to isolate PPIs in which one of the interaction partners was an E3. To prevent artifacts

from dimeric E3s, PPI pairs in which both partners were E3s were excluded, as well as any PPIs that involved an E3 and a core

CRL subunit such as RBX1 or a cullin. Under these conditions we identified 7,581 BioPlex-supported E3-protein pairs with
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experimental evidence of a physical interaction, from which we randomly sampled 1,000 pairs to use for generating the positive con-

trol BioPlex AlphaFold-Multimer prediction set.

Extraction of prediction quality metrics from AlphaFold predictions. In order to globally access all predictions generated in the

manuscript, we utilized a previously published python script41 (https://github.com/walterlab-HMS/AF2multimer-analysis; colabfol-

d_analysis.py). The colabfold_analysis.py script takes AlphaFold output files and returns statistics such as the pLDDT per individual

residue, the PAE value for each pair of residues (between and within individual chains), and the number of contacts. We ran the co-

labfold_analysis.py script on each prediction using the following parameters to define interchain contacts as follows: 1) a maximum

distance of 5 Angstroms between any two atoms in two residues (–distance 5), 2) aminimumPAE value of 10 between each residue in

the contact (–pae 10 and –pae-modmin), and 3) aminimumpLDDT value >=50 for both residues (–plddt 50). The resulting output files

containing residues meeting the above criteria were then used to assess prediction quality as described below.

Mean PAE values for all contacts in eachmodel were calculated and subsequently normalized between 0 and 1 using all prediction

classes (COMET-nominated, screen-negative and true random). More specifically, the inverse of the normalized PAE values was

taken so that the best values of the resulting metric were close to 1. Information about contact consistency across models was incor-

porated by quantifying the average number of models each contact was observed in (minimum = 1, maximum = 5) for each complex,

and these values were also normalized between 0 and 1 using all prediction classes.

A weighted sum incorporating the normalized PAE and contact consistency values was then used to compute a summary score as

follows:

S =

�
PAEavg$

1

2

�
+

 �
models

contact

�
avg

$
1

2

!

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests for each experiment are described in the text, figure legends or STARMethods. In Figures 2D, 2E, 3E, 4F, S3C, S3D,

S3E, S4A, and S4B, Pearson’s correlation coefficients were calculated using the cor() function in R. In Figures S3C, S3D, and S3E the

fitted line was produced using function geom_smooth() in the R package ggplot using parameter ‘method = ‘‘lm’’’ and all other pa-

rameters being default. Error bars in Figures 3D and 4D, and all panels of Figure S7 correspond to standard error. For all COMET

screens (Figures 3F, 3H, 4E, and 4F), PSIs were compared between NTC and target genes using the t.test() function in R, and the

p values were adjusted via the Benjamini–Hochberg procedure using the p.adjust() function with the method set to Benjamini-

Hochberg (method=‘BH’). In Figure 3G, a one-sided hypergeometric test was computed using the p.hyper() function in R with the

lower.tail = FALSE parameter specified. In Figure 5E, Bonferroni corrected p values were calculated using a two-sided pairwise Wil-

coxon test via the pairwise.wilcox.test() function in R with the p.adjust.method parameter set to Bonferroni (p.adjust.method = ‘‘bon-

ferroni’’). In Figure 5G, a two-sided Fisher’s exact test was used to identify differences in the proportions of complexes that pass the

threshold using fisher.test() function in R. Resulting p values were adjusted in R using the p.adjust() function with the method set to

Benjamini-Hochberg (method=‘BH’). In Figure S7, the mean of the NTC and gRNA GFP:mCherry ratios were compared using a one-

sided t-test using the t.test() function in R with the alternative hypothesis set to greater (alternative = ‘‘greater’’).
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https://github.com/walterlab-HMS/AF2multimer-analysis
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