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During development of organisms, as well as during myriad 
physiological and pathophysiological processes, individual 
cells traverse a manifold of molecularly and functionally 

distinct states. However, although experimental methods for pro-
filing various aspects of single-cell biology have recently prolifer-
ated, almost all such methods deliver only a static snapshot of each 
cell. To address this in part, ‘pseudotime’ methods computationally 
place individual cells along a continuous trajectory based on their 
transcriptomes1–6. However, pseudotime infers rather than directly 
measures transcriptional dynamics, is dependent on sufficient rep-
resentation along the trajectory and may fail to capture the detailed 
dynamics of individual cells (for example, directionality, multiple 
superimposed potentials)7. In contrast, time-lapse microscopy can 
experimentally measure transcriptional dynamics, but is limited to 
visualization of a few marker genes in a few cells, and as such may be 
insufficient to decipher the complexity of many biological systems.

In the present study, we describe a technique, sci-fate, for measur-
ing the dynamics of gene expression in large numbers of single cells 
and at the level of the whole transcriptome. In brief, we integrated 
protocols for labeling newly synthesized mRNA with 4-thiouridine 
(4sU)8,9 with single-cell combinatorial indexing RNA-sequencing 
(sci-RNA-seq10). As a proof of concept, we applied sci-fate to a model 
system of cortisol response, characterizing expression dynamics in 
>6,000 single cells. From these data, we quantify the dynamics of 
the transcription factor (TF) modules that underpin the cell cycle, 
glucocorticoid receptor (GR) activation and other processes, and 
develop a framework for inferring the distribution of cell-state tran-
sitions. The methods described in the present study may be broadly 
applicable to quantitatively characterize transcriptional dynamics in 
diverse systems.

Results
Overview of sci-fate. Briefly, sci-fate relies on the following steps 
(Fig. 1a): (1) cells are incubated with 4sU, a thymidine analog, to 
label newly synthesized RNA11–17. (2) Cells are harvested, fixed with 
4% paraformaldehyde (PFA), and then subjected to a thiol (SH)-
linked alkylation reaction, which covalently attaches a carboxyami-

domethyl group to 4sU by nucleophilic substitution8. (3) Cells are 
distributed by dilution to four 96-well plates. The first sci-RNA-seq 
molecular index is introduced via in situ reverse transcription (RT) 
with a poly(T) primer bearing both a well-specific barcode and a 
degenerate unique molecular identifier (UMI). During first-strand 
complementary DNA synthesis, modified 4sU is a template for gua-
nine rather than adenine incorporation. (4) Cells from all wells are 
pooled and then redistributed by FACS to multiple 96-well plates. 
(5) Double-stranded complementary DNA is synthesized. After 
Tn5 transposition, cDNA is PCR-amplified via primers recognizing 
the Tn5 adaptor on the 5′-end and the RT primer on the 3′-end. 
These primers also bear a well-specific barcode that introduces 
the second sci-RNA-seq molecular index. (6) PCR amplicons are 
subjected to massively parallel DNA-sequencing. As with other sci-
methods10,18–25, most cells pass through a unique combination of 
wells, such that their contents are marked by a unique combination 
of barcodes that can be used to group reads derived from the same 
cell. (7) The subset of each cell’s transcriptome corresponding to 
newly synthesized transcripts is distinguished by T→C conversions 
in reads mapping to mRNAs (see Methods).

For quality control, we first tested sci-fate with a mixture of 
HEK293T (human) and NIH/3T3 (mouse) cells under four con-
ditions: with versus without 4sU labeling (200 nM, 6 h), and with 
versus without the SH-linked alkylation reaction. The resulting tran-
scriptomes were overwhelmingly species coherent (>99% purity for 
both human and mouse cells, 2.7% collisions; see Supplementary 
Fig. 1a,b) with similar mRNA recovery rates (overall median 21,342 
UMIs per cell; see Supplementary Fig. 1c). However, only with 4sU 
labeling and SH-linked alkylation did we observe a substantial pro-
portion of reads bearing T→C conversions, that is, newly synthe-
sized transcripts (46% and 31% for treated human and mouse cells, 
respectively, versus 0.8% for untreated cells; see Supplementary  
Fig. 1d). The aggregated transcriptomes of cells derived from sci-fate 
and conventional sci-RNA-seq were highly correlated (Spearman’s 
correlation r = 0.99; see Supplementary Fig. 1e,f), suggesting that 
short-term labeling and conversion do not substantially bias tran-
script counts.
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Profiling of transcriptome dynamics in cortisol response. To 
investigate the transcriptional dynamics of cortisol response26, we 
applied sci-fate to an in vitro model wherein dexamethasone (DEX), 
a synthetic mimic of cortisol, activates glucocorticoid receptor 
(GR), which binds to thousands of locations across the genome and 

rapidly alters gene expression27–30. Specifically, we treated lung ade-
nocarcinoma-derived A549 cells for 0, 2, 4, 6, 8 or 10 h with 100 nM 
DEX. In each condition, cells were incubated with 4sU (200 nM) 
for the 2 h immediately preceding harvest. We then performed a 
384 × 192 sci-fate experiment (Fig. 1b). Each of the 6 conditions was 
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Fig. 1 | Sci-fate enables joint profiling of whole and newly synthesized transcriptomes. a, The sci-fate workflow. Key steps are outlined in the text. IAA, 
iodoacetamide. Asterisk, chemically modified 4sU. b, Experimental scheme. A549 cells were treated with dexamethasone for varying amounts of time 
ranging from 0 h to 10 h. Cells from all treatment conditions were labeled with 4sU 2 h before harvest for sci-fate. c, Violin plot showing the fraction of 4sU-
labeled reads per cell for each of the six treatment conditions. Cell number, n = 1,054 (0 h), 1,049 (2 h), 949 (4 h), 1,262 (6 h), 1,041 (8 h) and 1,325 (10 h). 
For all violin plots in this figure: thick lines in the middle are the medians; upper and lower box edges are the first and third quartiles, respectively; whiskers 
are 1.5 times the interquartile range; and circles are outliers. d, Violin plot showing the fraction of 4sU-labeled reads per cell (n = 6,680), split out by the 
subsets that map to exons versus introns. e, UMAP visualization of A549 cells (n = 6,680) based on their whole transcriptomes (left), newly synthesized 
transcriptomes (middle) or joint analysis, that is, combining the top PCs from each (right). f, Same as left and right of e, respectively, but colored by 
cluster ID from UMAP based on whole transcriptomes. g, Same as right of e, but colored by normalized expression of G2/M-marker genes by their overall 
expression levels (left) or their levels of newly synthesized transcripts (right). UMI counts for these genes are scaled by library size, log(transformed), 
aggregated and then mapped to Z-scores.
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represented by 64 wells during the first round of indexing, such that 
all samples could be processed in a single sci-RNA-seq experiment 
to minimize batch effects.

After filtering out low-quality cells, potential doublets and a 
small subgroup of differentiated cells (see Methods), we obtained 
single-cell profiles for 6,680 cells (median 26,176 UMIs correspond-
ing to mRNAs detected per cell). A median of 20% mRNA UMIs 
were labeled per cell (Fig. 1c; see Supplementary Fig. 2a–c). The 
proportion of newly synthesized mRNAs was markedly higher 
in reads mapping to intronic (65%) versus exonic (13%) regions 
(P < 2.2 × 10−16, two-sided Wilcoxon’s signed-rank test; Fig. 1d, 
and see Supplementary Fig. 2d,e), consistent with the expectation 
that the intronic reads are more likely to have been recently syn-
thesized. We also compared intronic reads and newly synthesized 
mRNA for RNA-velocity analysis31 and observed a subjectively con-
sistent picture, suggesting that they capture similar information (see 
Supplementary Fig. 2f).

In exploring these data, we first asked whether the newly synthe-
sized versus whole-transcriptome data convey identical or distinct 
information with respect to cell state. Performing dimensionality 
reduction with Uniform Manifold Approximation and Projection 
(UMAP)32 on whole transcriptomes failed to separate DEX-
untreated (0 h) versus DEX-treated (2+ h) cells (Fig. 1e, left, and see 
Supplementary Fig. 2g). In contrast, applying UMAP to the newly 
synthesized subset of the single-cell transcriptomes readily sepa-
rated DEX-untreated versus -treated cells (Fig. 1e, center). These 
patterns are probably a consequence of the fact that, in DEX-treated 
cells, the newly synthesized transcriptome more faithfully reflects 
the GR response itself. Illustrating this, the classic markers for GR 
response, FGD4 (ref. 27) and FKBP5 (ref. 33), exhibited the highest-
fold induction in comparisons of the newly synthesized transcrip-
tome at 0 h versus 2 h, but the magnitude of their induction was 
dampened in comparisons of the whole transcriptome between the 
same time points (see Supplementary Fig. 2h,i and Supplementary 
Table 1).

To jointly make use of the information conveyed by the whole 
and newly synthesized transcriptomes, we combined their top prin-
cipal components (PCs) for UMAP analysis. This approach sepa-
rates cells that had experienced no (0 h), recent (2 h) or extended 
(4+ h) DEX treatment (Fig. 1e, right). With this joint approach, 
cells corresponding to two clusters defined by analysis of whole 
transcriptomes (clusters 1 and 4; Fig. 1f, left) each split into two 
groups (Fig. 1f, right). Examining the levels of newly synthesized 
mRNAs corresponding to cell-cycle markers34, one pair of these new 
groups corresponds to G2/M-phase cells (high levels of both overall 
and newly synthesized G2/M markers), and the other to early G0/
G1-phase cells (high levels of overall but low levels of newly synthe-
sized G2/M markers) (Fig. 1g, and see Supplementary Fig. 2j,k). Of 
note, cells from the 2-h time point exhibited a distribution of cell-
cycle states according to this joint information (Fig. 1e,g). Overall, 
these analyses illustrate how joint analysis of the newly synthesized 
and whole components of single-cell transcriptomes can recover 
cell-state information that is not easily obtained from the whole 
transcriptomes alone.

TF module activity decomposes cellular processes. Multiple, 
dynamic gene, regulatory processes are concurrently under way in 
this in vitro system—minimally, the GR response and the cell cycle. 
We speculated that these might be disentangled, and their intersec-
tion probed, by first identifying the TF modules driving new mRNA 
synthesis in relation to each process.

TF modules, comprising candidate links between TFs and their 
regulated genes, were identified as follows: for each gene, across the 
6,680 cells, we computed correlations between the levels of newly 
synthesized mRNA for that gene and the overall expression level of 
each of the 859 expressed TFs, using LASSO (least absolute shrinkage  

and selection operator) regression. Out of 1,086 links involving TFs 
characterized by ENCODE35, 807 were validated by TF-binding 
sites near the genes’ promoters35, a 4.3-fold enrichment relative 
to background expectation (odds ratio for validation = 2.89 for 
LASSO-identified links versus 0.67 for background, P < 2.2 × 10−16, 
two-sided Fisher’s exact test). These covariance links were further 
filtered by chromatin immunoprecipitation–sequencing (ChIP–
seq) binding36, and supplemented with additional covariance links 
validated by motif37 enrichment analysis (Fig. 2a; see Methods). 
Altogether, we identified 986 links between 29 TFs and 532 genes 
(see Supplementary Fig. 3a,b and Supplementary Table 2). As a 
control, we permutated the cell order of the cell × TF expression 
matrix (Ti) (see Methods), and then repeated the analysis. No links 
were identified after permutation. Some of the identified TF–gene 
regulatory relationships are supported by a manually curated data-
base of TF networks (TRRUST38), for example E2F1 (top enriched 
TF of E2F1-linked genes = E2F1, adjusted P = 8 × 10−7)39, NFE2L2 
(top enriched TF of NFE2L2-linked genes = NFE2L2, adjusted 
P = 0.003)39 and SREBF2 (top enriched TF of SREBF2-linked 
genes = SREBF2, adjusted P = 0.0006)39.

The 29 TFs with one or more gene links included well-estab-
lished GR response effectors such as CEBPB40, FOXO1 (ref. 41) and 
JUNB42 (see Supplementary Fig. 3c,d). This group also included sev-
eral TFs not previously implicated in the GR response, including 
YOD1 and GTF2IRD1, both of which exhibited greater expression 
and activity in DEX-treated cells (see Supplementary Fig. 3e,f). The 
main TFs driving cell-cycle progression were also identified, for 
example E2F1, E2F2, E2F7, BRCA1 and MYBL2 (ref. 43). Notably, 
the expression levels of TFs such as E2F1 were more highly cor-
related with the levels of newly synthesized than overall target gene 
mRNAs (see Supplementary Fig. 3g). We also observed regulatory 
links corresponding to TFs involved in cell differentiation such 
as GATA3 (ref. 44), mostly expressed in a subset of quiescent cells, 
as well as TFs involved in oxidative stress response such as NRF1  
(ref. 45) and NFE2L2 (NRF2)46.

We calculated a measure of each of these 29 TFs’ activities in each 
cell, based on the normalized aggregation of the levels of newly syn-
thesized mRNA for all its target genes. We then computed the abso-
lute correlation coefficient between each pair of TFs with respect to 
their activity across the 6,680 cells. Hierarchical clustering of these 
pairwise correlations identified several major TF modules, that is 
sets of TFs that appear to be regulating the same process (Fig. 2b). A 
first large TF module corresponds to all cell cycle-related TFs in the 
set, for example E2F1 and FOXM1 (ref. 43). A second large TF mod-
ule corresponds to GR response-related TFs, for example FOXO1, 
CEBPB, JUNB and RARB40–42. The other modules include one cor-
responding to GR-activated G1/G2/M-phase cells (KLF6, TEAD1 
and YOD1; see Supplementary Fig. 3h), and another corresponding 
to probably differentiating, GR-activated, G1-phase cells (GATA3 
and AR; see Supplementary Fig. 3h)44,47. Additional TFs or TF mod-
ules appear to capture other processes that are heterogeneous in this 
population of cells, including NRF1 and NFE2L2 for stress response/
apoptosis (top enriched pathway of NFE2L2-linked genes: ferropto-
sis, adjusted P = 1 × 10−5)39,45,46,48, KLF5 for DNA-damage repair (top 
pathway: ATM signaling, adjusted P = 0.018)39,49 and SREBF2 for 
cholesterol homeostasis (top pathway: ‘SREBF and miR33 in cho-
lesterol and lipid homeostasis’, adjusted P = 9 × 10−6)39,50.

To assign cell-cycle states to individual cells, we first ordered 
cells by their cell cycle-linked TF module activity. This resulted in 
a smooth, almost circular trajectory, in which the levels of newly 
synthesized mRNA corresponding to known cell-cycle markers was 
dynamic (Fig. 2c)34. We observed a gap between late G2/M phase 
and early G1 phase, consistent with the dramatic cell-state change 
during cell division. By unsupervised clustering of the activities of 
individual TFs within the cell cycle-linked TF module, we identified 
nine cell-cycle states spanning the early, middle and late cell-cycle 
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Fig. 2 | Characterizing TF modules driving concurrent, dynamic gene, regulatory processes in populations of single cells. a, Schematic of approach used 
to identify links between TFs and their regulated genes. b, Heatmap showing the absolute Pearson’s correlation coefficient between the activities of pairs 
of TFs (cell number, n = 6,680). c, UMAP visualization of A549 cells (n = 6,680) based on the activity of cell cycle-related TF module, colored by levels 
of newly synthesized mRNA corresponding to S-phase markers (top left), G2/M-phase markers (top right) and E2F1 activity (bottom left). The bottom 
right panel is colored by pseudotime based on the point position on the principal curve estimated using the princurve package64. d, Same as c, but colored 
according to nine cell-cycle states defined by unsupervised clustering analysis. In broad terms, cell-cycle states 1–3 correspond to G1 phase, 4–6 to S 
phase and 7–9 to G2/M phase. e, Scatter plot showing the changes in the fraction of newly synthesized mRNA in each cell (n = 6,680) along cell-cycle 
progression. The red line is the smoothed curve estimated using the geom_smooth function65. f, Similar to e, but showing smoothed activity of selected TF 
modules as a function of cell cycle pseudotime. g, UMAP visualization of A549 cells (n = 6,680) based on the activity of GR response-related TF module, 
colored by DEX treatment time (left), CEBPB or FOXO1 activity (middle panels), or cluster ID from unsupervised clustering (right). Throughout the figure, 
to calculate the TF module activity, newly synthesized UMI counts for genes linked to module-assigned TFs are scaled by library size, log(transformed), 
aggregated and then mapped to Z-scores.
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phases (Fig. 2d). Early G1- and late G2/M-phase cells exhibited 
decreased synthesis of new RNA relative to other parts of the cell 
cycle, possibly due to chromosomal condensation during mitosis 
(Fig. 2e)51–53. Other (that is, non-cell-cycle) TF modules exhibited 
different dynamics in relation to cell-cycle progression (Fig. 2f). For 
example, GATA3 activity peaks in the early G1 phase, potentially 
reflecting a cell-differentiation pathway distinct from cell-cycle 
reentry44. In contrast, the modules of KLF5 and SREBF2, associ-
ated with DNA repair and lipid homeostasis, respectively, exhibited 
greater activity from S phase to G2 phase, possibly related to roles in 
DNA replication and cell division, respectively54.

Similarly, the cells can also be ordered into a smooth trajectory 
based on GR response-linked TF module activity. As expected, this 
trajectory correlates well with DEX treatment time, as well as the 
activity of GR response-related TFs (Fig. 2g). By unsupervised clus-
tering of the activities of individual TFs within the GR response-
linked TF module, we identified GR response states corresponding 
to no, low and high levels of activation (Fig. 2g).

We next sought to explore the intersection of the nine cell-cycle 
states (Fig. 2d) and the three GR response states (Fig. 2g). Each 
of 27 possible state combinations was represented by some cells, 
with the smallest group corresponding to 1.1% of the overall data-
set (n = 74 cells, intersection of ‘early G2/M’ cell-cycle state and ‘no 
GR activation’ state; see Supplementary Fig. 4a,b). Although we 
observe several TF modules that appear specific to certain inter-
sections of the cell cycle and GR response (KLF6/TEAD1/YOD1 
and GATA3/AR; Fig. 2b), several observations support the con-
clusion that the dynamics of the cell cycle and GR response oper-
ates largely independently. First, we observe minimal correlation 
between the activities of the primary TF modules for the cell-cycle 
and the GR response across the 6,680 cells (Pearson’s correlation 
r = 0.004; Fig. 2b). Second, the relative proportions of each of the 
27 possible state combinations are readily predicted by proportions 
of cell-cycle and GR response states, that is with no interaction 
term (see Supplementary Fig. 4b).

Inferring single-cell transcriptome dynamics with sci-fate. We 
next sought to develop a strategy to use sci-fate data to infer the past 
transcriptional state of each cell, that is at the onset of 4sU label-
ing, which might in turn allow us to relate cells derived from differ-
ent time points. The inference of past transcriptional state requires 
knowledge of two parameters—first, the detection rate of newly 
synthesized transcripts (that is, the proportion of newly synthe-
sized transcripts containing one or more detected T→C mutations) 
and, second, the degradation rate of each mRNA species. In this 
section, we discuss how each of these parameters can be estimated 
directly from the sci-fate data generated for this experiment. A more 
detailed consideration is provided in Methods.

Under the assumption that mRNA degradation rates are not 
affected by DEX treatment (this assumption is validated in the fol-
lowing paragraph), it is relatively straightforward to estimate sci-
fate’s detection rate for newly synthesized transcripts. Each sci-fate 
transcriptome in this dataset consists of two components—the 
newly synthesized transcriptome, the detection rate of which we 
hope to estimate, and the ‘leftover’ transcriptome, that is transcripts 
that were present at the onset of 4sU labeling, minus any degrada-
tion over the course of the 2 h. Comparing the 0-h (untreated) and 
2-h DEX treatment groups, we expect that their leftover bulk tran-
scriptomes (at the onset of 2-h 4sU labeling) should be identical, as 
should sci-fate’s detection rate for newly synthesized transcripts. As 
such, an equation can be constructed relating the transcriptomes 
of these treatment groups to each other (see Methods). For each of 
the 186 genes exhibiting the largest differences in new transcrip-
tion between the two conditions, we solved this equation to estimate 
sci-fate’s detection rate. As these estimates were largely consistent 
across genes and robust to sequencing depth (see Supplementary 

Fig. 5a–e), we used their median value (82%) as sci-fate’s estimated 
detection rate for all subsequent analyses.

We next sought to estimate the degradation rate of each mRNA 
species. As noted above, the bulk transcriptome at each time point 
in our experiment can be broken down into the newly synthesized 
transcriptome and the leftover transcriptome. Furthermore, the 
leftover transcriptome should equal the bulk transcriptome from 
the time point 2 h earlier, provided that we correct for mRNA deg-
radation over that interval. From these assumptions, an equation 
can be constructed and solved to estimate the mRNA half-life of 
each gene, which we did independently for each 2-h interval of the 
experiment (see Methods and Supplementary Table 3). As a first 
quality check, we simply compared these estimated mRNA degrada-
tion rates between time points, and found them to be both consis-
tent and robust to sequencing depth (see Supplementary Fig. 5f,g; 
median Pearson’s r = 0.92). As a second quality check, we compared 
them with orthogonally generated estimates of mRNA half-lives 
from the literature9. Despite the fact that different technologies 
were used on different cell lines (A549 versus K562), the estimates 
of mRNA half-lives were reasonably consistent (see Supplementary 
Fig. 5h; Pearson’s r = 0.76). Of note, the absolute differences in esti-
mated mRNA half-lives between sci-fate and previous techniques 
could be due to the use of different cell lines or systematic differ-
ences between the techniques.

With these parameters in hand, we next estimated the past 
transcriptional state of each cell in our dataset (see Methods and 
Supplementary Fig. 6a,b), and sought to use these estimated states 
to link individual cells to each other across time points (Fig. 3a). 
Specifically, for each cell B (for example, a cell from the 2-h time 
point), we used a recently developed alignment method34 to identify 
a cell A profiled at an earlier time point (for example, a cell from 
the 0-h time point), wherein A’s current state was closest to B’s esti-
mated past state. In this framework, A can be regarded as the parent 
state of B. Applying this strategy to each of the five intervals com-
prising our experiment, we constructed a set of linkages spanning 
the entire dataset and time course (Fig. 3b).

A key contrast with conventional pseudotime is that, with sci-
fate, each cell is now characterized not only by its present state, 
but also by specific linkages to a series of distinct cells matching its 
predicted past and/or future states (Fig. 3c). To evaluate whether 
these mini-trajectories contain structure, we applied UMAP and 
unsupervised clustering, which resulted in three distinct trajectory 
clusters (Fig. 3d). To annotate these, we checked the proportions 
of each of the aforementioned three GR response states and nine 
cell-cycle states in each of them, as a function of time. As expected, 
all three trajectories exhibited a rapid transition from no GR activa-
tion to low/high GR activation (Fig. 3e). However, each trajectory 
appears to correspond to a different starting point with respect to 
the cell cycle (Fig. 3f). Trajectory 1 corresponds to cells that transi-
tion from G2/M to G1 phase over the course of the 10-h experi-
ment. Trajectory 2 corresponds to cells that transition from late S 
phase to G2/M phase over the course of the experiment. Trajectory 
3 corresponds to cells that transition from G1 to either S phase or 
G1 arrest over the course of the experiment. The inference of G1 
arrest subsequent to DEX treatment is consistent with the dynamics 
of cell-state proportions in this experiment as well as with previ-
ous research55,56. As a control, we clustered the cell-state transition 
trajectories by simply aligning neighboring time points without 
knowledge of newly synthesized mRNA; this failed to recover the 
expected cell-cycle dynamics (see Supplementary Fig. 6c).

Inferred cell transitions recapitulate expected dynamics. We next 
sought to evaluate whether the distribution of cell-state transitions 
inferred by sci-fate are consistent with the expected dynamics. We 
assigned each cell into one of the 27 states (3 GR response × 9 cell-
cycle states) and computed a cell-state transition network (Fig. 4a), 
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with the assumption that the cell-state transitions in this experiment 
follow a Markov process, with transition probabilities that do not 
change over time. This assumption is validated in part by the obser-
vation that the distributions of predicted cell-state transitions, esti-
mated from the last three time intervals (4–6 h, 6–8 h, 8–10 h), are 
highly correlated with each other (see Supplementary Fig. 7a) despite 
varied cell-state proportions at 4 h versus the later time points (see 
Supplementary Fig. 7b). Consistent with DEX treatment, transitions 
are highly biased from the G1 to S, S to G2/M and G2/M to G1 phase 
of the cell cycle (Fig. 4a). As a control analysis, cell-state transition 
networks were similarly derived, but based either on randomly per-
mutated cell-state transition links or on links derived from mature 
mRNAs only; these both failed to recapitulate the expected pattern 
of cell-cycle transitions (see Supplementary Fig. 7c).

The 27 states shown in Fig. 4a each correspond to subsets of 
cells, the transcriptomes of which are similar, making use of the 
joint information provided by distinguishing between old (>2 h) 

and new (<2 h) transcripts. it corresponds to expected phenomena, 
for example irreversible progression through the GR response, as 
well as irreversible progression through the cell cycle. As examples, 
S-phase cells without GR activation (0-h treatment) mostly tran-
sit into S-phase cells with GR activation (2-h treatment), whereas 
G2/M-phase cells with no GR activation (0-h treatment) mostly 
transit to G2/M- or G1-phase cells with GR activation (2-h treat-
ment) (Fig. 4b). For comparison, overlaying the same UMAP coor-
dinates with RNA-velocity vectors31 recovered similar patterns, but 
only when treatment time information was incorporated into the 
RNA-velocity analysis (see Supplementary Fig. 7d).

Can we use this framework for a better understanding of the 
characteristics of transcriptional states that govern their dynam-
ics? As a first approach, we calculated pairwise Pearson’s distance 
between the aggregated transcriptomes of each of the 27 states. 
As expected, the greater the distance between any pair of states, 
the lower the proportional representation of that transition in the  
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network (Spearman’s correlation coefficient = −0.38; Fig. 4c). As 
a second approach, we computed ‘instability’ as the proportion of 
cells inferred to be moving out of a given state between time points  
(Fig. 4d). As expected, states corresponding to no GR activation 
were the least stable by this metric. Furthermore, among high GR 
activation states, states corresponding to early G1 were the most 
stable. These representations of the data are consistent with the 
transition network, wherein the states corresponding to high GR 
activation and early G1 are a frequent ‘destination’ of all nearby 
states (purple triangles in Fig. 4a).

Discussion
Sci-fate captures information analogous to RNA velocity31, which 
distinguishes ‘older’ and ‘newer’ transcripts based on their splic-
ing status. On the one hand, RNA velocity is more straightforward 
than sci-fate, because it makes use of information that is indirectly 
captured by many single-cell-profiling technologies, whereas sci-
fate requires 4sU-labeling steps that cannot necessarily be used in 
all contexts. On the other hand, sci-fate lends itself to experimen-
tal control in a way that RNA velocity does not, as the timing and 
length of 4sU labeling can be specified whereas, with RNA velocity, 

it is a product of endogenous splicing dynamics. Furthermore, as 
we show, an experimental design that couples the labeling of newly 
synthesized mRNA to a time series enables the quantitative analysis 
of cells with complex transcriptional histories and futures.

While our manuscript was under review, two methods directed 
at the same goal, scSLAM-seq and NASC-seq, were reported57,58. 
Although there are similarities including the labeling strategy, we 
note major differences with respect to performance, accuracy and 
scalability: (1) as sci-fate uses combinatorial indexing, we success-
fully measured newly synthesized mRNA in >6,000 cells in one 
experiment, compared with <200 cells for scSLAM-seq or NASC-
seq. Given that sci-fate is easily adaptable to three-level combi-
natorial indexing25, it should already be possible to profile newly 
synthesized mRNA as >1 million cells per experiment. (2) Sci-fate 
costs <US$0.20 per cell for library preparation with two-level index-
ing, and <US$0.01 per cell with three-level indexing25. By compari-
son, both scSLAM-seq and NASC-seq utilize smart-seq which costs 
~US$11 per cell for library preparation59. On a related point, sci-fate 
required an order of magnitude fewer raw reads per cell (~200,000 
sci-fate versus ~2 million with scSLAM-seq), but achieved a greater 
number of genes detected per cell. (3) A key feature of sci-fate is that 

In
st

ab
ili

ty

G
R response state

(No→
high activation)

Cell-c
yc

le st
ate

(G
1→G2/M

)

State
instability

0.9

0.8

0.7

0.6

ba

0

0.1

0.2

0.3

0.4

0 0.02 0.04 0.06

Transition distance

T
ra

ns
iti

on
 p

ro
po

rt
io

n

DEX response

No activation

Low activation

High activation

G1

S

S

G2/M

G2/M

G1

Cell-cycle state

Early G1 

Late G2/M

c d

0

2

4

6

8

10

G1

S

G2/M

Cell-cycle stage

Treatment time (h) Single-cell transition path (sci-fate)

Single-cell transition path (sci-fate)

RNA velocity

RNA velocity

Fig. 4 | Constructing a state transition network for gR response and cell cycle. a, Cell-state transition network. The nodes are 27 cell states characterized 
by combinations of cell-cycle and GR activation states. The links represent frequent cell-state transition trajectories (transition proportion >10%) between 
cell states. This threshold for defining a link corresponds to approximately 2 s.d. from the mean transition proportion calculated after permutating cell-
transition links (n = 729). b, The x and y coordinates correspond to the joint information UMAP space shown in the far-right panel of Fig. 1e, colored by 
DEX treatment time (top) or inferred cell-cycle state (bottom). Gray lines represent inferred cell-state transition links between parent and child cells 
(middle: cell-state transition links starting from cells at the S phase and no GR activation stage (link number, n = 433); right: cell-state transition links 
starting from cells at the G2/M phase and no GR activation stage (link number, n = 365)). Black arrows show main cell-state transition directions. c, 
Scatter plot showing the relationship between transition distance (Pearson’s distance) and transition proportion (n = 729), together with the red LOESS 
(locally estimated scatter-plot smoothing) smoothed line by ggplot265. d, Three-dimensional plot showing the cell-state stability landscape. The x axis 
represents GR response states (from no to low to high activation state). The y axis represents the cell-cycle states ordered from G1 to G2/M. The z axis 
represents cell-state instability, defined as the proportion of cells inferred to be moving out of a given state between time points.

NaTuRe BioTeChNology | VOL 38 | AUGUST 2020 | 980–988 | www.nature.com/naturebiotechnology986

http://www.nature.com/naturebiotechnology


ArticlesNAtuRe BIotecHNoloGy

we performed in  situ 4sU chemical conversion in bulk fixed cells, 
resulting in a high reaction efficiency and low mRNA loss. In con-
trast, scSLAM-seq and NASC-seq require extraction of mRNA from 
each cell, followed by bead-based purification and chemical conver-
sion. As a result, sci-fate exhibits higher efficiency to detect low abun-
dance transcripts (median 6,500 genes detected per cell with sci-fate 
versus ~4,000 with scSLAM-seq, despite 1/10th of the raw sequencing 
depth). Furthermore, sci-fate exhibits a higher detection rate of newly 
synthesized mRNA (82% in sci-fate versus <50% in scSLAM-seq). 
(4) The signal-to-noise ratio (labeled versus unlabeled cells) of sci-
fate is 20- to 58-fold, compared with only ~10-fold for scSLAM-seq 
or NASC-seq. This is partly due to the fact that the sci-fate library 
preparation is strand specific, whereas smart-seq is not. (5) Sci-fate 
enables direct counting of newly synthesized versus pre-existing 
mRNA via 3′-tagged UMIs60, which are used by neither scSLAM-seq 
nor NASC-seq. Additional advantages of sci-fate include compatibil-
ity with fixed cells and the ability to concurrently process multiple 
independent biological samples within a single experiment. Finally, 
it is notable that in situ 4sU chemical conversion requires cell per-
meabilization and, at least in our experience, PFA fixation, neither 
of which is straightforward to introduce on droplet-based single-cell 
RNA-sequencing (scRNA-seq) platforms such as 10x Genomics.

We note that, although sci-fate enables quantification of mRNA 
synthesis in single cells, we remain in need of methods for mea-
suring mRNA degradation rates in single cells. Related to this, our 
simplifying assumption that gene-specific degradation rates are 
constant across our DEX time course might not be a good choice in 
other systems. Specifically, in systems where the gene-specific deg-
radation rates are expected or observed to vary substantially over 
time, these should be estimated for each time interval separately.

Sci-fate can be broadly applied to most in vitro systems to quan-
titatively characterize cell-state dynamics within short time win-
dows (for example, one to several hours). For even shorter time 
frames, a concern is that the signal-to-noise ratio will drop as the 
rate of labeling falls toward the background rate of 0.8%. For longer 
time frames, a time-series approach can be adopted as in the main 
experiment described in the present study.

A major limitation of sci-fate is that 4sU-labeling experiments are 
generally performed within in vitro cell culture models. However, 
recent studies have shown that 4sU can be used together with 
transgenic UPRT-expressing mice to stably label cell type-specific 
nascent RNA transcription in vivo61–63, suggesting that sci-fate, with 
further optimizations to enhance 4sU incorporation and detection 
rate, can potentially be used to profile single-cell transcriptional 
dynamics in vivo and at scale.
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Methods
Mammalian cell culture. All mammalian cells were cultured at 37 °C with 5% CO2, 
and were maintained in high-glucose Dulbecco’s modified Eagle’s medium (Gibco 
catalog no. 11965) for HEK293T and NIH/3T3 cells or Dulbecco’s modified Eagle’s 
medium/F12 medium for A549 cells, both supplemented with 10% fetal bovine 
serum and 1× penicillin–streptomycin (Gibco, catalog no. 15140122; 100 U ml−1 of 
penicillin, 100 µg ml−1 of streptomycin). Cells were trypsinized with 0.25% trypsin–
ethylenediaminetetraacetic acid (EDTA) (Gibco, catalog no. 25200-056) and split 
1:10 three times a week.

Sample processing for sci-fate. For HEK293T and NIH/3T3 cells, cells were 
incubated with 200 µM 4sU for 6 h before cell harvest. A549 cells were treated 
with 100 nM DEX for 0, 2, 4, 6, 8 or 10 h. Cells in all treatment conditions 
were incubated with 200 µM 4sU for the last 2 h before cell harvest. Of note, an 
excessively long labeling time (the extreme of which results in all transcripts being 
labeled) may result in information loss. Through a test experiment on HEK293T 
cells, we found that the transcriptome degradation rate is around 10% per h for 
each cell. We then selected 2 h as the labeling time window, such that about 80% 
of detected transcriptomes per cell would be previously synthesized and usable 
to infer the previous cell state. In theory, a shorter labeling time enables more 
accurate cell past state inference but also requires sampling of more time points 
to cover a continuous process with a given time interval (that is, 10 h in our DEX-
treatment experiment). A short labeling time would also potentially be affected 
by greater noise. In our data, the background labeling rate (‘labeled’ reads ratio in 
non-labeled cells) is 0.8%. Given that 2 h of labeling results in detection of ~20% 
of transcripts as newly synthesized, to keep at least a 10:1 signal-to-noise ratio, the 
minimum labeling period should be at least 50 min.

All cell lines (A549, HEK293T and NIH/3T3 cells) were trypsinized, spun 
down at 300g for 5 min (4 °C) and washed once in 1× ice-cold phosphate-buffered 
saline (PBS). All cells were fixed with 4 ml ice-cold 4% PFA (EMS) for 15 min 
on ice. After fixation, cells were pelleted at 500g for 3 min (4 °C) and washed 
once with 1 ml PBSR (1× PBS, pH 7.4, 0.2 mg ml−1 bovine serum albumin (New 
England Biolabs), 1% SuperRnaseIn (Thermo) and 10 mM dithiothreitol (DTT)). 
After washing, cells were resuspended in PBSR at 2–10 million cells ml−1, flash 
frozen and stored in liquid nitrogen. PFA-fixed cells were thawed in a 37 °C water 
bath, spun down at 500g for 5 min, and incubated with 500 µl PBSR including 
0.2% Triton X-100 for 3 min on ice. Cells were pelleted and resuspended in 500 µl 
nuclease-free water including 1% SuperRnaseIn. Then, 3 ml of 0.1 N HCl was 
added into the cells for a 5-min incubation on ice23; 3.5 ml Tris-HCl, pH 8.0, and 
35 µl of 10% Triton X-100 were added into cells to neutralize the HCl. Cells were 
pelleted and washed with 1 ml PBSR. Cells were resuspended in 100 µl PBSR 
(without DTT), and 100 µl PBSR (without DTT) with fixed cells was incubated 
with a mixture including 40 µl iodoacetamide (100 mM), 40 µl sodium phosphate 
buffer (500 mM, pH 8.0), 200 µl dimethylsulfoxide and 20 µl H2O, at 50 °C for 
15 min. The reaction was quenched by 8 µl DTT (1 M) and 8.5 ml PBS66. Of note, 
the cell loss rate is high (>95%) in the chemical conversion and centrifugation 
steps. Cells were pelleted and resuspended in 100 µl PBSI (1× PBS, pH 7.4, 
0.2 mg ml−1 bovine serum albumin, 1% SuperRnaseIn). For all later washes, cells 
were pelleted by centrifugation at 500g for 5 min (4 °C).

The following steps are similar for the sci-RNA-seq protocol with PFA-fixed 
nuclei10,19. Briefly, cells were distributed into four 96-well plates. For each well, 
500–5,000 cells (2 µl) were mixed with 1 µl of 25 µM anchored oligo(dT) primer 
(5′-ACGACGCTCTTCCGATCTNNNNNNNN[10-bp index]TTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTVN-3′, where ‘N’ is any base and ‘V’ is either A, C 
or G; Integrated DNA Technologies) and 0.25 µl of 10 mM dNTP mix (Thermo), 
denatured at 55 °C for 5 min and immediately placed on ice. Then, 1.75 µl of 
first-strand reaction mix, containing 1 µl of 5× Superscript IV First-Strand buffer 
(Invitrogen), 0.25 µl of 100 mM DTT (Invitrogen), 0.25 µl SuperScript IV reverse 
transcriptase (200 U μl−1, Invitrogen) and 0.25 μl RNaseOUT Recombinant 
Ribonuclease Inhibitor (Invitrogen), was added to each well. RT was carried out 
by incubating plates at the following temperature gradient: 4 °C for 2 min, 10 °C for 
2 min, 20 °C for 2 min, 30 °C for 2 min, 40 °C for 2 min, 50 °C for 2 min and 55 °C 
for 10 min. All cells were then pooled, stained with 4′,6-diamidino-2-phenylindole 
(DAPI, Invitrogen) at a final concentration of 3 μM, and sorted at 50 cells per well 
into 5 μl EB buffer. Cells were gated based on the DAPI stain such that singlets 
were discriminated from doublets and sorted into each well. Then, 0.66 μl mRNA 
Second Strand Synthesis buffer (New England Biolabs) and 0.34 μl mRNA Second 
Strand Synthesis enzyme (New England Biolabs) were added to each well, and 
second strand synthesis was carried out at 16 °C for 180 min. Each well was then 
mixed with 5 μl Nextera TD buffer (Illumina) and 0.025 μl i7-only TDE1 enzyme 
(provided by Illumina), and incubated at 55 °C for 5 min to carry out tagmentation. 
The reaction was stopped by adding 12 μl DNA-binding buffer (Zymo) and 
incubating at room temperature for 5 min. Each well was then purified using 36 μl 
AMPure XP beads (Beckman Coulter), eluted in 16 μl EB buffer (Qiagen) and 
transferred to a fresh multi-well plate.

For PCR reactions, each well was mixed with 2 μl of 10 μM P5 primer (5′-AAT
GATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGAC 
GCTCTTCCGATCT-3′; Integrated DNA Technologies), 2 μl of 10 μM P7 primer 
(5′-CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3′; IDT) 

and 20 μl NEBNext High-Fidelity 2× PCR Master Mix (New England Biolabs). 
Amplification was carried out using the following program: 72 °C for 5 min, 98 °C 
for 30 s, and 18–22 cycles of 98 °C for 10 s, 66 °C for 30 s, 72 °C for 1 min) and 
a final 72 °C for 5 min. After PCR, samples were pooled and purified using 0.8 
volumes of AMPure XP beads. Library concentrations were determined using 
Qubit (Invitrogen) and the libraries were visualized by electrophoresis on a 6% 
tris-borate–EDTA–polyacrylamide gel electrophoresis (PAGE) gel. Libraries were 
sequenced on the NextSeq 500 platform (Illumina) using a v.2 150-cycle kit (read 1: 
18 cycles, read 2: 130 cycles, index 1: 10 cycles, index 2: 10 cycles).

Read alignment and downstream processing. Read alignment and gene count 
matrix generation for the scRNA-seq was performed using the pipeline that we 
developed for sci-RNA-seq10 with minor modifications. Reads were first mapped to a 
reference genome with STAR v.2.5.2b67, with gene annotations from GENCODE v.19 
for humans and GENCODE v.M11 for mice. For experiments with HEK293T and 
NIH/3T3 cells, we used an index combining chromosomes from both humans (hg19) 
and mice (mm10). For the A549 experiment, we used human genome build hg19.

The single-cell sam files were first converted into alignment tsv files using the 
sam2tsv function in jvarkit68. Next, for each single-cell alignment file, mutations 
matching the background SNPs were filtered out. For background SNP reference of 
A549 cells, we downloaded the paired-end, bulk RNA-seq data for A549 cells from 
ENCODE36 (sampled name: ENCFF542FVG, ENCFF538ZTA, ENCFF214JEZ, 
ENCFF629LOL, ENCFF149CJD, ENCFF006WNO, ENCFF828WTU, 
ENCFF380VGD). Each paired-end fastq files was first adaptor clipped using trim_
galore-0.4.1 (ref. 69) with default settings, aligned to human hg19 genome build 
with STAR v.2.5.2b67. Unmapped and multiple mapped reads were removed using 
samtools v.1.370. Duplicated reads were filtered out by MarkDuplicates function 
in picard 1.10571. De-duplicated reads from all samples were combined and sorted 
with samtools v.1.370. Background SNPs were called using the mpileup function in 
samtools v.1.370 and the mpileup2snp function in VarScan 2.3.972. For the HEK293T 
and NIH/3T3 test experiment, a background SNP reference was generated in a 
similar pipeline, with the aggregated single-cell sam data from control condition 
(no 4sU labeling and no iodoacetamide treatment condition).

For each single-cell alignment file, all mutations with quality score ≤13 were 
removed. Mutations at both ends of each read were mostly due to sequencing 
errors, and thus were also filtered out. Mutations mapping to the background SNP 
reference were filtered out. For each read, we checked where there were T→C 
mutations for sense strand or A→G mutations for antisense strand, and labeled 
these mutated reads as newly synthesized.

Each cell was characterized by two digital gene expression matrices from the 
full sequencing data and newly synthesized RNA data as described in the read 
alignment and downstream processing steps. Genes with expression in fewer 
than five cells were filtered out. Cells with <2,000 UMIs or >80,000 UMIs were 
discarded. Cells with doublet score >0.2 by doublet analysis pipeline Scrublet 
v.0.273 were removed.

The dimensionality of the data was first reduced using principal components 
analysis (after selecting the top 2,000 genes with the highest variance) on a digital 
gene expression matrix on either full gene expression data or the newly synthesized 
gene expression data by Monocle 3/alpha2,74. The top ten PCs were selected 
for dimensionality reduction analysis with UMAP v.0.3.2, a recently proposed 
algorithm based on Riemannian geometry and algebraic topology to perform 
dimension reduction and data visualization32. For joint analysis, we combined the 
top ten PCs calculated on the whole transcriptome and the top ten PCs on the 
newly synthesized transcriptome for each single cell before dimension reduction 
with UMAP. Cell clusters were done via the densityPeak algorithm implemented 
in Monocle 3/alpha2,74. We first performed UMAP analysis on joint information of 
all processed cells, and identified an outlier cluster (724 of 7,404 cells). These cells 
were marked by high-level expression of GATA3, a marker of differentiated cells44, 
and were filtered out before downstream analysis.

Linking TFs to their regulated genes. We sought to identify links between TFs 
and their regulated genes based on expression covariance. Cells with >10,000 
UMIs detected, and genes (including TFs) with newly synthesized reads detected 
in >10% of all cells were selected. On average, these TFs are detected as being 
expressed in ~58% of cells. Of note, a small number of TFs with high expression 
overall, but low expression within newly synthesized reads, were filtered out at this 
step (14 TFs with expression in >50% of cells; 75 of TFs with expression in >20% 
of cells, filtered consequent to this). The full gene expression and newly synthesized 
gene count per cell were normalized by cell-specific library size factors computed 
on the full gene expression matrix by estimateSizeFactors in Monocle 3/alpha2,74, 
log(transformed), centered, then scaled by scale() function in R. For each gene 
detected, a LASSO regression model was constructed with package glmnet v.2.075 
to predict the normalized expression levels, based on the normalized expression of 
853 TFs annotated in the ‘motifAnnotations_hgnc’ data from package RcisTarget 
v.1.2.137, by fitting the following model:

Gi ¼ β0 þ βtTi

where Gi is the adjusted gene expression value for gene i. It is calculated with the 
newly synthesized mRNA count (gi) for each cell, normalized by the cell-specific 
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size factor (SGi) estimate using estimateSizeFactors in Monocle 3/alpha2,74 on the 
full expression matrix of each cell, and log(transformed):

Gi ¼ ln
gi
SGi

þ 0:1

� �

To simplify downstream comparison between genes, we standardize the 
response Gi before fitting the model for each gene i with the scale() function in R.

Similar to Gi, Ti is the adjusted TF expression value for each cell. It is calculated 
using the full TF expression count (ti) for each cell, normalized by the SGi estimate 
using estimateSizeFactors in Monocle 3/alpha2,74 on the full expression matrix of 
each cell, and log(transformed):

Ti ¼ ln
ti
SGi

þ 0:1

� �

Before fitting, Ti is standardized with the scale() function in R. 𝛽0 and 𝛽t are 
regression coefficients in LASSO regression.

Although negative correlations between a TF’s expression and a gene’s new 
synthesis rate could reflect the activity of a transcriptional repressor, we felt that 
the more probable explanation for negative links reported by glmnet was mutually 
exclusive patterns of cell-state-specific expression and TF activity. Thus, during 
prediction, we excluded TFs with negatively correlated expression with a potential 
target gene’s synthesis rate, and also low regression coefficient (≤0.03) links. We 
identified a total of 6,103 links between TFs and regulated genes. A modified 
strategy without filtering negatively correlated TF-gene synthesis rate pairs 
identified 47 additional repressive TF-gene links between 9 TFs and 46 genes (see 
Supplementary Table 2).

Our approach aims to identify TFs that may regulate each gene, by finding the 
subset that can be used to predict its expression in a regression model. However, 
a TF with expression correlated with a gene’s expression does not definitively 
mean that it is directly regulating that gene. To identify putatively direct targets 
within this set, we intersected the links with TFs profiled in ENCODE ChIP–seq 
experiments36. Of the 6,103 links between TFs and genes by LASSO regression, 
1,086 links have TFs characterized in ENCODE, 807 of which were validated 
by target TF-binding sites near gene promoters from ENCODE35, a 4.3-fold 
enrichment relative to background expectation (odds ratio for validation = 2.89 for 
links identified in LASSO regression versus 0.67 for background; P < 2.2 × 10−16, 
two-sided, Fisher’s exact test). Only gene sets with significant enrichment of the 
correct TF ChIP–seq binding sites were retained (two-sided, Fisher’s exact test, 
false discovery rate of 5%), and further pruned to remove indirect target genes 
without TF-binding data support. Ultimately, 591 links were retained using this 
approach.

To expand the set of validated TF–gene links, we further applied the package 
SCENIC37, a pipeline to construct gene-regulatory networks based on the 
enrichment of target TF motifs in the 10-kb window around genes’ promoters. 
Each co-expression module identified by LASSO regression was analyzed using cis-
regulatory motif analysis with RcisTarget v.1.2.137. Only modules with substantial 
motif enrichment (normalized enrichment score reported by RcisTarget > 3) 
of the correct TF regulator were retained, and pruned to remove indirect target 
genes without motif support. We filtered the TF–gene links using three correlation 
coefficient thresholds (0.3, 0.4 and 0.5), and combined all links validated by 
RcisTarget37. In total, 509 links were validated using this motif-based approach.

Combining both approaches, we identified a total of 986 TF–gene regulatory 
links using the covariance between TF expression and gene synthesis rate, validated 
by DNA-binding data or motif analysis. To evaluate the possibility that the links 
were artifacts of regularized regression, we permutated the order of single-cell TF 
expression (Ti) and performed the same analyses. No links were identified after  
this permutation.

Applying a similar strategy to all mRNAs (rather than only newly synthesized 
mRNAs) revealed 2,108 TF–gene links, with 532 identified by both approaches. 
The 448 TF–gene links uniquely identified by analysis of newly synthesized mRNA 
exhibited higher correlations between TF expression and newly synthesized mRNA 
than all mRNAs (mean Spearman’s correlation of 0.19 versus 0.16, respectively; 
P = 5.3 × 10−8, two-sided, Wilcoxon’s rank-sum test). The TF–gene links identified 
exclusively by analysis of all mRNAs corresponded to lower mRNA synthesis rates 
for linked genes (mean UMI count, normalized by size factor for newly synthesized 
mRNA: 1.20 for genes with links by newly synthesized mRNAs versus 0.97 for 
genes with links identified solely through analysis of all mRNAs; P < 2.2 × 10−16, 
two-sided, Wilcoxon’s rank-sum test).

Ordering cells based on the activity of functional TF modules. To calculate TF 
‘activity’ in each cell, newly synthesized UMI counts for genes linked to each of the 
27 TFs were scaled by library size, log(transformed), aggregated and then mapped 
to Z-scores. As TFs with highly correlated or anti-correlated activity suggest 
that they may function in linked biological processes, we calculated the absolute 
Pearson’s correlation coefficient between each pair of TF activity, and based on 
this we clustered TFs using a ward.d2 clustering method in package pheatmap 
v.1.0.1276. Five functional TF modules were identified and annotated based on  
their functions.

To characterize the dynamics of cells in relation to potentially independent 
cellular processes, cells were ordered by the activity of cell cycle-related TFs (TF 
module 1) or GR activity-related TFs (TF module 3) with UMAP32 (metric = 
‘cosine’, n_neighbors = 30, min_dist = 0.01). The cell-cycle progression trajectory 
was validated by cell-cycle gene markers in Seurat v.2.3.434. Three cell-cycle phases 
were identified using the densityPeak algorithm implemented in Monocle 3/
alpha2,74, on the UMAP coordinates ordered by cell-cycle TF modules. As each 
main cell-cycle phase still showed variable TF activity and cell-cycle marker 
expression, we segmented each phase to early/middle/late states by k-means 
clustering (k = 3), and recovered a total of nine cell-cycle states. Three GR response 
states were identified using the densityPeak algorithm implemented in Monocle 3/
alpha2,74.

Past transcriptome state recovery from sci-fate. To infer the past transcriptome 
state (that is, the cell state before 4sU labeling commenced), we assume that mRNA 
half-lives are consistent across different DEX-treatment durations. This assumption 
is further validated by a self-consistency check later. Under this assumption, 
the partly degraded bulk transcriptome before the 2-h 4sU labeling should be 
the same between no DEX and 2-h DEX-treated cells. Thus, for any given gene, 
differences in whole transcriptomes (bulk) between these time points should be 
equal to differences in the newly synthesized transcriptomes (bulk), corrected by 
technique’s detection rate:

A0h=S0h � N0h=S0hð Þ=α ¼ A2h=S2h � N2h=S2hð Þ=α

where A0h is the aggregated UMI count for all cells in the no DEX treatment group; 
S0h is the library size (total UMI count of cells) at no DEX treatment; N0h is the 
aggregated newly synthesized UMI count for all cells in the no DEX treatment 
group; A2h is the aggregated UMI count for all cells in the 2-h DEX treatment 
group; S2h is the library size (total UMI count of cells) in the 2-h DEX treatment 
group; N2h is the aggregated newly synthesized UMI count for all cells in the 2-h 
DEX treatment group; and α is the detection rate for each gene in sci-fate. As cells 
from different time points were profiled in the same experiment and the UMI 
counts detected per cell were similar across conditions (see Supplementary  
Fig. 2a,b), we assume the same overall RNA amount in the 0-h and 2-h samples, 
and normalize the aggregated gene count reads by total counts of each time point. 
For experiments where this assumption may not stand, spike-in standards could be 
used to control for differences in the overall amount of mRNA between conditions. 
In theory, one detection rate can be calculated for each gene. However, for genes 
with minor differences of the newly synthesized rate between two conditions, 
the estimated α is dominated by noise. We thus selected genes showing higher 
differences in the normalized, newly synthesized rate between two conditions: we 
first tested a series of thresholds for gene filtering and calculated the α for each 
gene. We then plotted the relationship between threshold and the ratio of genes 
with out-of-range α values (<0 or >1). We selected the threshold that was at the 
knee point of the plot, resulting in 186 genes being selected (see Supplementary 
Fig. 5a). The differences in newly synthesized mRNA of these genes correlate 
highly with the differences in mRNA expression level (Pearson’s r = 0.93; see 
Supplementary Fig. 5b), suggesting that the new RNA detection rate is stable 
across genes (see Supplementary Fig. 5c). In the present study we use the median 
detection rate across 186 selected genes to estimate α.

We next computed the mRNA degradation rate across each 2-h interval. As the 
A549 cell population can be regarded as stable without external perturbation, for 
2-h DEX-treated cells, its past state (before 2-h 4sU labeling) should be the same 
as the 0-h DEX-treated cells. Expanding on this logic, the past state (before 4sU 
labeling) for T = 0-/2-/4-/6-/8-/10-h DEX-treated cells should be similar to the 
profiled T = 0-/0-/2-/4-/6-/8-h cells, respectively:

At1=St1 � Nt1=St1ð Þ=α ¼ At0=St0 ´ β

At1 is the aggregated UMI count for all cells in t1; St1 is the library size (the total 
UMI count of cells) at t1; Nt1 is the aggregated newly synthesized UMI count for 
all cells at t1; α is the estimated detection rate of sci-fate; At0 is the aggregated UMI 
count for all cells in t0; St0 is the library size (the total UMI count of cells) at t0; 
and β is 1 − gene-specific degradation rate between t0 and t1, and is related to the 
mRNA half-life γ by:

β ¼ 1=2ð Þ t1�t0ð Þ=γ

The β was calculated for each of the 14,587 genes across each 2-h interval of 
DEX treatment. As with the self-consistency check, the gene degradation rates are 
highly correlated across different DEX-treatment times (see Supplementary  
Fig. 5g). We therefore used the average degradation rate for each gene for 
downstream analysis.

With the overall sci-fate detection rate as well as per-gene degradation rates 
estimated, the past transcriptome state of each cell can be estimated using:

at1 � nt1=α ¼ at0 ´ β

at1 is the single-cell UMI count in t1; nt1 is the single-cell newly synthesized 
UMI count at t1; and α is the detection rate for each gene in sci-fate. In the present 
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study, we use the median detection rate across 186 selected genes as its estimates; 
β is 1 − gene-specific degradation rate between t0 and t1. The at0 is the estimated 
single-cell transcriptome in a past time point t0, with all negative values (15.6% of 
values on average) converted to 0.

The detection rate (α) of the newly synthesized transcriptome is experiment 
specific and depends mainly on the 4sU-labeling concentration. Generally, 
a lower 4sU concentration will lead to a lower 4sU incorporation rate into 
newly synthesized mRNA, which will reduce the detection rate of newly 
synthesized transcripts. In addition, the length of sequencing reads may affect 
the detection rate, as short sequencing reads will reduce the possibility of 
detecting incorporated 4sU. In the case of our experiments and as noted earlier, 
we used relatively long reads (on average, 75 bp of transcript-derived sequence 
obtained per read) to potentially increase detection rate. We also designed the 
experiments such that all treatment conditions share the same 4sU treatment 
concentration and incubation time in the same cell type. Furthermore, all cells 
were sequenced in the same sequencing run, such that all conditions were 
expected to share a similar α. For sci-fate experiments with different labeling 
conditions or sequencing settings, the α would need to be re-estimated for each 
part of the experiment. Of note, our simplifying assumption that gene-specific 
degradation rates are constant across our DEX time course might not be a 
good choice in other systems. Specifically, in systems where the gene-specific 
degradation rates are expected or observed to substantially vary over time, these 
should be estimated for each time interval separately.

Linkage analysis to build single-cell state trajectory. The goal of what we call 
here ‘linkage analysis’ is to associate each cell with parent and child cells at different 
time points, that is single-cell state trajectories. Our approach is based on the fact 
that the past transcriptome states (before 2-h 4sU labeling) of cells at t1 should 
share the same cell population distribution with the profiled transcriptome states 
of cells at t0 (2 h earlier than t1), assuming that there is no cell apoptosis. We thus 
applied a published manifold alignment strategy to identify common cell states 
between two datasets, based on common sources of variation34. As a result, whole 
transcriptomes from t0 cells and recovered past transcriptomes from t1 cells are 
aligned in the same UMAP space. This analysis is based on an assumption that, for 
intermediate time points, we are oversampling the space of physiologically distinct 
states in this time course. Violation of this and other assumptions can be detected 
by outliers during alignment of the two datasets. For each cell A from t1, we 
selected its nearest neighbor in t0 as its parent state in the alignment UMAP space. 
Similarly, for each cell from t0, we selected its nearest neighbor in t1 as its child 
cell state. Of note, it is not necessary for the link to be bidirectional: the parent 
state of one cell may be linked to a different child cell. After the parent and child 
states were identified for each cell (except cells at the start and end time points), we 
then extend each cell trajectory by searching for the linked parent cell of each cell’s 
parent, and similarly the linked child cell of each cell’s child. Thus, each single cell 
can be characterized by a single-cell state transition path across all six time points 
spanning 10 h. As multiple cells (>50) are profiled for each of the 27 defined cell 
states, stochastic cell-state transition processes can also potentially be captured.

Dimensionality reduction and clustering analysis. For dimensionality reduction 
on single-cell transcriptomes, the top five PCs for full transcriptomes and the top 
five PCs for newly synthesized transcriptomes were selected for each state, and 
combined in temporal order along a single-cell state trajectory for UMAP analysis. 
The main cell trajectory types were identified using a density peak-clustering 
algorithm77.

With cell-state proportion at the beginning time point (0-h treatment) and 
cell-state transition probabilities estimated from the data, we first predicted the 
cell-state distribution after 2 h, assuming that the cell-state transitions in DEX 
treatment are cell-autonomous, time-independent, Markovian processes. Similarly, 
the cell-state distribution at later time points can be predicted from the cell-state 
distribution 2 h earlier.

For RNA-velocity analysis of these same data, single-cell spliced/unspliced 
expression matrices were generated using the command line interface of velocyto 
v.0.1731 with the default run_smartseq2 mode on single-cell bam files. Cell 
transition direction inference was performed with an optimized, scalable, RNA-
velocity analysis toolkit scVelo v.0.1.17 and scanpy v.1.4.1 with default settings31,78. 
To integrate treatment time information into the RNA-velocity analysis of 
the 0-h and 2-h time points, we prohibited transitions of cells within 0 h, and 
instead selected the future state as the cell at the 2-h time point with the highest 
transition probability.

Cell-state instability and cell-state distance calculations. We defined cell-
state instability as the proportion of cells in a given state ‘moving’ to any other 
state at the next time point. To calculate cell-state distances, we first sampled an 
equal number (n = 50) of cells from each state, and separately aggregated the full 
transcriptome and newly synthesized transcriptome of sampled cells of that state 
(that is, in this ‘joint transcriptome’, each gene is represented by two columns, one 

for the whole transcriptome and one for the newly synthesized transcriptome). The 
cell-state distance is calculated as (1 – Pearson’s correlation coefficient between the 
joint transcriptomes of two different states).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data generated by this study can be downloaded in raw and processed forms 
from the National Center for Biotechnology Information’s Gene Expression 
Omnibus (GSE131351).

Code availability
Scripts for processing sci-fate sequencing were written in Python and R with code 
available at https://github.com/JunyueC/sci-fate_analysis.
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Sample size No explicit calculations were performed to determine sample size. 

Data exclusions No data were excluded from the study.

Replication The technique was tested and validated in two independent experiments using different cell lines. For A549 cell experiment, each of the six 
treatment conditions was represented by 64 replicate wells during the first round of processing in sci-fate. All attempts at replication were 
successful.

Randomization The order of samples are randomized during drug treatment, and during sample processing in sci-fate.

Blinding Investigators were blinded to group allocation during data collection (sequencing) and analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
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Cell line source(s) HEK293T, NIH/3T3 and A549 cells were from ATCC

Authentication None of the cell lines were authenticated.

Mycoplasma contamination Cell lines were not tested for Mycoplasma contamination.
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No commonly misidentified cell lines were used.
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