
The precise delineation of causal variants that alter 
human phenotypes, particularly diseases, is a fun-
damental goal of human genetics, providing crucial 
insights into the biology connecting genotype and 
phenotype and potentially facilitating the prediction 
of disease onset. Recently, ‘next-generation’ DNA 
sequencing1 has provided a means to define nearly 
comprehensive maps of genetic variation, including 
the several million single nucleotide variants (SNVs), 
hundreds of thousands of small insertion or deletion 
events and thousands of structural variants2 in typical 
human genomes. Most of these are common3, but indi-
vidual genomes also contain many thousands of rare  
and effectively private genetic variants.

Despite new methods to comprehensively catalogue 
human genetic variation, the identification of variants 
that are causal for disease or other traits remains a dif-
ficult challenge. Genetic approaches (such as linkage  
analysis and genome-wide association studies 
(GWASs)) can identify candidate variants but are often 
insufficiently powered to specifically identify causal 
variants. For example, GWASs have identified associa-
tions between ~1,300 loci and ~200 diseases or traits4 
(see the US National Human Genome Research Institute 
Catalog of Published Genome-Wide Association 
Studies). However, owing in part to weak effect sizes 
and correlations among neighbouring variants, pre-
cise identification of causal variants has been achieved 
for only a handful of these loci, and many legitimate 

associations remain undiscovered. Even for diseases 
suspected to result from highly penetrant or Mendelian 
mutations, locus heterogeneity and limitations in sam-
ple or pedigree sizes often limit the discovery power 
and resolution of purely genetic studies. Now, with the 
use of exome and genome sequencing in disease genet-
ics, the challenge of whittling down a list of candidate 
variants to those that are causal becomes particularly 
important. In fact, the primary roadblock faced by the 
field is increasingly one of variant interpretation, rather 
than data acquisition.

The interpretive challenge presented by ‘next- 
generation genetics’ is, in fact, a long-standing one in 
quantitative genetics5,6 and is often described as a ‘mul-
tiple hypothesis testing problem’ in which nominal ‘sig-
nificance’ thresholds (for example, P < 0.05) yield many 
false discoveries when applied to many tests. However, 
true hypotheses are true, and false hypotheses are false, 
regardless of how many are tested. As such, the actual 
‘multiple testing burden’ depends on the proportion 
of true and false hypotheses in any given set: that is, 
the ‘prior probability’ that any given hypothesis is true, 
rather than the number of tests per se. This challenge 
can thus be viewed as a ‘naive hypothesis testing’ prob-
lem — that is, when in reality only one or a few vari-
ants are causal for a given phenotype, but all (or many) 
variants are a priori equally likely candidates, the prior 
probability of any given variant being causal is minis-
cule. As a consequence, extremely convincing data 
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Private
A genetic variant that is 
confined to a single individual, 
family or population.

Prior probability
Otherwise simply known as the 
‘prior’, this is the probability of 
a hypothesis (or parameter 
value) without reference to the 
available data. Priors can be 
derived from first principles or 
be based on general knowledge  
or previous experiments.
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Abstract | Genome and exome sequencing yield extensive catalogues of human genetic 
variation. However, pinpointing the few phenotypically causal variants among the many 
variants present in human genomes remains a major challenge, particularly for rare and 
complex traits wherein genetic information alone is often insufficient. Here, we review 
approaches to estimate the deleteriousness of single nucleotide variants (SNVs), which 
can be used to prioritize disease-causal variants. We describe recent advances in 
comparative and functional genomics that enable systematic annotation of both coding 
and non-coding variants. Application and optimization of these methods will be essential 
to find the genetic answers that sequencing promises to hide in plain sight.
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Deleterious
A genetic variant that lowers 
the fitness of an organism:  
that is, it decreases survival  
or reproductive success.

Conserved
Shared identity of either 
protein or nucleotide 
sequences, which can be 
indicative of constraint.

Neutral
Sequences that are free to 
evolve in the absence of 
natural selection and are 
therefore subject only to 
random mutational and  
genetic drift processes.

Phylogenetic scope
The taxonomic range captured 
by a given comparative 
sequence analysis — for 
example, mammals or 
eukaryotes.

are required to support causality, which is potentially 
unachievable for some true positives.

Defining the challenge in terms of hypothesis qual-
ity rather than quantity, however, points to a solution. 
Specifically, experimental or computational approaches 
that provide assessments of variant function can be 
used to better estimate the prior probability that any 
given variant is phenotypically important, and these 
approaches thereby boost discovery power. As a simple 
illustration of this concept, we and others have devel-
oped methods to identify causative genes for Mendelian 
disorders using exome sequencing7–10. Specifically, rare 
non-synonymous variants are considered candidates, 
whereas common, synonymous or non-coding vari-
ants are ignored. This strategy is effective not because 
it reduces the number of tests per se, but because rare 
non-synonymous variants are intrinsically more plau-
sible disease candidates. This method and related ones 
thus implicitly define non-uniform prior probabilities 
for candidate variants and use them to better interpret 
the significance of the observed genetic associations. 
Importantly, for prioritizing variants that have disease 
consequences, which typically reduce survival and 
reproductive success, these priors can be defined on 
the basis of expected deleteriousness.

In this Review, we survey strategies to estimate the 
deleteriousness of human genetic variants in order to 
better identify disease-causal variants when genetic 
information is insufficient: that is, when the haystack 
has been cleared away only to reveal a large pile of nee-
dles (FIG. 1). We focus on approaches to address two 
related but separable questions: whether a given vari-
ant has a functional effect at the molecular level and, 
if so, whether that functional alteration is deleterious to 
the organism. We discuss computational methods that 
use comparative genomics to predict deleteriousness in 
both coding and non-coding DNA and that in some 
cases incorporate knowledge of protein biochemis-
try and structure in the assessment of protein-coding 
variants. We also describe complementary experimen-
tal approaches for assessing deleteriousness and how  
such approaches are now being scaled to genome-wide 
levels. Although we are primarily concerned with appli-
cations in human disease research, these approaches 
can often be applied to other species, especially model 
organisms with high-quality genome assemblies and 
related resources. We further note that, although there 
is a distinction between a priori estimation of variant 
causality and a posteriori confirmation that a given can-
didate variant is truly causal, most of the approaches 
we describe can be used in both settings, albeit not in 
the same analysis. Finally, although this Review empha-
sizes analytical methods for SNVs, it will be crucial to 
develop methods to estimate the deleteriousness of all 
classes of variation that have an impact on genomes, 
ranging from SNVs to small insertion or deletion events 
to large structural changes.

The diversity of approaches that are relevant to 
variant interpretation is illustrated in FIG. 2 for the 
β-haemoglobin (HBB) locus, in which some muta-
tions give rise to thalassaemia. We note at the outset 

that perhaps the greatest challenge for this field is the 
integration of these various strategies into a unified, 
quantitative, predictive framework that spans functional 
categories of variation and incorporates both experi-
mental and computational information. At the end 
of this Review, we discuss challenges to be addressed 
before such a framework can be effective.

Computational approaches
Evolution as the best measure of deleteriousness. Most 
computational methods to estimate deleteriousness 
exploit the fact that sequences observed among living 
organisms are those that have not been removed by 
natural selection. Indeed, if we consider evolution to 
be the ultimate mutagenesis experiment, comparative 
sequence analysis is a powerful source of information 
regarding deleteriousness. In particular, by quantifying 
evolutionary changes in genes or genomes, conserved 
positions that have evolved too slowly to be neutral can 
be identified. These are sites in which past mutations 
were removed by purifying selection because they were 
deleterious and are therefore highly likely to be sites 
where recently occurring or new mutations are also 
deleterious.

Although the methodological details governing 
how this concept is exploited vary greatly, two con-
siderations are essential. First, sequence conservation  
is not a predictor of deleteriousness per se, but rather it is  
conservation in excess of neutral expectations that  
is used to infer constraint11. This relationship is quan-
titative and spans a broad range of deleteriousness, 
manifesting as a continuous spectrum of evolutionary 
rates across wide ranges of evolutionary time over all 
domains of life. Second, the ‘phylogenetic scope’ of the 
compared sequences has substantial effects on the use 
and interpretability of these analyses12–15. Broad scopes 
— for example, human to yeast — afford extreme speci-
ficity, as neutral divergence is so large that any detect-
able sequence conservation indicates strong constraint. 
However, reductions in shared biology result in a loss 
of sensitivity for all of those functional sequences that 
have emerged or changed since the most recent com-
mon ancestor. Conversely, narrow scopes (for example, 
among primates) capture larger amounts of shared 
biology and functional sequence but at the expense 
of specificity. For example, at the per-nucleotide level, 
~98.8% of sites are conserved between human and 
chimpanzee genomes16, although only a small minority 
are under constraint17–19; comparisons of numerous pri-
mate sequences are required to achieve useful specificity 
within this scope20,21.

Constraint-based approaches to annotate deleteri-
ous genomic positions assume that such positions will 
have a detectable history of purifying selection, but 
there are important drawbacks to this assumption. In 
particular, functional divergence will lessen the corre-
lation between past constraint and present-day delete-
riousness. For example, humans have acquired many 
genes22,23 and regulatory elements24 in recent evolu-
tionary history; such sequences will have fewer, less 
divergent orthologues and are therefore given lower 
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Figure 1 | Assessing variant deleteriousness to boost 
discovery power of genetic analyses. Genetic 
approaches (a) — for example, linkage analysis followed  
by re-sequencing, genome-wide association studies 
(GWASs), exome or genome sequencing — define both 
candidate loci (b) and candidate variants within those loci, 
often in many functional categories (c). Methods to predict 
the phenotypic relevance of individual variants within 
these often lengthy lists of candidates (represented by the 
row of stars) include predictions of deleteriousness based 
on comparative genomics (d, for coding and non-coding 
variants), knowledge of protein biochemistry and structure 
(e, for coding variants) and experimental approaches (f, for 
coding and non-coding variants). Panel d is an illustration 
of three aligned nucleotides, showing one that is 
completely conserved (left column), one that is highly 
variable (middle column) and one that is moderately 
conserved (right column). Evaluation of this information 
depends on the scope and neutral divergence of the 
phylogeny (left side) relating the aligned sequences. Panel 
e is an image taken from Stone and Sidow27 and shows the 
median predicted impact of all amino acid substitutions at 
each residue of p53, ranging from low (red) to high (blue). 
The DNA (white molecule) binding domain is particularly 
prone to highly deleterious mutations. Panel f is a simplified 
illustration of the method described by Patwardhan et al.83, 
in which both ‘wild-type’ (top) and mutant (bottom, 
indicated by the star) promoter sequences are assessed by 
performing in vitro transcription (arrows) and quantifying 
function by sequencing. In this case, the mutation reduces 
promoter function resulting in fewer transcripts. Panel e is 
reproduced, with permission, from REF. 27 © (2005)  
Cold Spring Harbor Laboratory Press.

Constrained
Sequences that are under 
purifying selection to maintain 
function, which often, but not 
always, results in sequence 
conservation.

scores or are filtered away by constraint-based meas-
ures. This can be ameliorated by additional sequenc-
ing of closely related species to boost statistical power 
within narrower phylogenetic scopes (for example, 
REF. 20) and constitutes a strong argument to gener-
ate assemblies for many, if not all, primate species. 
Additionally, adaptive functionality often results from 
mutations in previously highly constrained sites25–27, 

suggesting that constraint-based measures are effective 
even for regions with species-specific functional altera-
tions. Nevertheless, the detection of causal variants that 
result from a gain-of-function mutation within previ-
ously non-functional (for example, REF. 28) or rapidly 
evolving sequences (for example, REF. 23) will be ren-
dered disadvantageous by the evolutionary frameworks 
discussed here.
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Figure 2 | Functional and evolutionary annotations highlight disease variation at the HBB locus. Shown is an 
integrated view of the nucleotides (each coloured bar at the top is one position), disease mutation locations, constraint 
scores, promoter mutagenesis data and protein-based mutation impact predictions for the proximal promoter, first exon 
and first intron of β-haemoglobin (HBB). Sites known to harbour disease mutations (red vertical bars) are from HbVar98 and 
include all β-thalassaemia-associated point substitutions (insertion or deletion variants are not shown); shaded grey lines 
extend below each mutation site to the bottom of the figure. Beneath the HbVar annotations, Genomic Evolutionary Rate 
Profiling (GERP)67 scores — measured as ‘rejected substitutions’ (higher scores indicate higher conservation) — are 
plotted as vertical bars ranging from –4 (values below this are capped) to 5.2. At the bottom left, the average absolute 
values of the mutational impact (over all non-reference mutations) as measured by Patwardhan et al.83 are shown as 
vertical blue bars for each assayed position. Note that disease mutations cluster within the non-canonical TATA box, which 
shows the highest degree of promoter impairment and also high constraint scores. At the bottom right, predictions made 
by Multivariate Analysis of Protein Polymorphism (MAPP)27 of the effects of all possible amino acid replacements at each 
codon are shown, binned into nine separate colours ranging from little to no predicted impact (light beige shading) to very 
high impact (dark red shading). The β-globin protein sequence encoded by HBB is plotted along the top of the MAPP 
prediction matrix. Note the cluster of disease mutations that disrupt the initiation codon and have large MAPP-predicted 
effects and high constraint scores. Also highlighted is the canonical splice donor position immediately downstream of the 
first exon, which also exhibits both disease mutations and high GERP scores.

Predicting the effects of protein-coding sequence changes. 
Methods for predicting the deleteriousness of protein-
altering variants are the richest and most detailed of the 
available approaches, capable of leveraging both evo-
lutionary and biochemical information. Nonsense and 
frameshift mutations are the most obvious candidates, 
as they are predicted to result in a loss of protein func-
tion and are heavily enriched among disease-causal vari-
ation (for example, see REFS 29,30). However, this class 
of variation is not unambiguously deleterious, in some 
cases allowing functional protein production or result-
ing in a loss of protein that is apparently not harmful31. 
Considering non-synonymous variants, the simplest and 
earliest approaches to estimate deleteriousness use dis-
crete biochemical categorizations such as ‘radical’ versus 
‘conservative’ amino acid changes32. However, there are 
now numerous more sophisticated approaches to classify 

non-synonymous variants on both quantitative and 
discrete scales (TABLE 1). Although detailed summaries 
of each available method are outside the scope of this 
Review (but see REF. 33), three general considerations 
are important.

First, it is important to differentiate first-principles 
approaches from trained classifiers. First-principles app-
roaches explicitly define a biological property (typically  
evolutionary) of deleterious variants and make pre-
dictions on the basis of similarity or dissimilarity to 
that definition. By contrast, trained classifiers gener-
ate prediction rules by identifying heuristic combi-
nations of many potentially relevant properties that 
optimally differentiate a set of true positives and nega-
tives. First-principles approaches have the advantage 
of greater interpretability; for example, radical and 
conservative annotations of amino acid substitutions 
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have a straightforward biochemical interpretation. 
Additionally, these approaches will not be misled by 
‘gold-standard’ data sets that are contaminated with 
erroneous annotations and/or are not representative of 
the general population of true positives and negatives34. 
However, first-principles methods are only as good as 
the assumption (or assumptions) that they make and 
do not model all of the relevant factors. Conversely, a 
trained classifier approach effectively yields a ‘black-box’ 
prediction and will be prone to the biases and errors  
of the gold-standard data. However, these approaches 
have the advantage of being specifically tunable to the 
desired task (that is, predicting disease causality) and are 
capable of incorporating many sources of information 
without requiring a detailed understanding of how that 
information is relevant.

Second, nearly all of these methods use alignments 
of homologous proteins to estimate mutational deleteri-
ousness27,35–46. These strategies generally exploit both the 
level of sequence conservation (that is, sites with fewer 
observed substitutions are inferred to be under tighter 
constraints and will have more deleterious effects when 
mutated) and the patterns of observed substitutions (that 
is, sites that are observed to tolerate a subset of amino acids  
are likely to be more deleteriously affected by amino 
acids outside the subset). In either case, the phyloge-
netic scope and quality of the alignment are essential but 
often overlooked factors. Alignments with lower diver-
sity offer less power, as both compatible and incompatible 
substitutions may be absent owing to insufficient diver-
gence. Conversely, inclusion of more distant sequences 
may suggest a wider range of diversity than is actually 

tolerated. For example, assessments of mutations on lac-
tose operon inhibitor (LacI) function are less accurate 
when based on alignments that include paralogues rela-
tive to alignments restricted to orthologues, despite the 
fact that the former capture greater sequence diversity27. 
This observation is likely to reflect the relaxed constraint 
and increased potential for acquiring novel functions 
of duplicated genes47. Interestingly, a recent analysis of 
mutational effects on human methylenetetrahydrofolate 
reductase activity showed that inclusion of even distant 
orthologues in a sequence alignment can reduce power48. 
This points to the impact of orthologous protein func-
tional divergence over long evolutionary periods and/or 
the accumulation of deleterious mutations that are offset 
by compensatory changes43.

Third, most protein-sequence-based methods also 
exploit biochemical data, including amino acid proper-
ties (such as charge), sequence information (such as the 
presence of a binding site) and structural information 
(such as the presence of a β-sheet). The integration of 
these data with comparative sequence analysis can sig-
nificantly improve predictions of deleteriousness49–53. 
As one example, consider the Multivariate Analysis of 
Protein Polymorphism (MAPP) method27, which quan-
tifies constraint in terms of biochemical properties (such 
as hydropathy and polarity) rather than substitutions 
per se. Mutational impact is estimated by measuring the 
distance between the properties of the new amino acid 
and the phylogenetically weighted average properties 
of the aligned residues, and these distances are normal-
ized to the observed evolutionary variability for each 
property. For example, if a given position exhibits many 

Table 1 | Tools for protein-sequence-based prediction of deleteriousness

Name Type Information URL Refs

MAPP Constraint-based 
predictor

Evolutionary and 
biochemical

http://mendel.stanford.edu/SidowLab/
downloads/MAPP/index.html 

27

SIFT Constraint-based 
predictor

Evolutionary and 
biochemical (indirect)

http://sift.bii.a-star.edu.sg/ 39

PANTHER Constraint-based 
predictor

Evolutionary and 
biochemical (indirect)

http://www.pantherdb.org/ 41

MutationTaster* Trained classifier Evolutionary, biochemical 
and structural

http://www.mutationtaster.org/ 40

nsSNP Analyzer Trained classifier Evolutionary, biochemical 
and structural

http://snpanalyzer.uthsc.edu/ 44

PMUT Trained classifier Evolutionary, biochemical 
and structural

http://mmb2.pcb.ub.es:8080/PMut/ 38

polyPhen Trained classifier Evolutionary, biochemical 
and structural

http://genetics.bwh.harvard.edu/pph2/ 35

SAPRED Trained classifier Evolutionary, biochemical 
and structural

http://sapred.cbi.pku.edu.cn/ 42

SNAP Trained classifier Evolutionary, biochemical 
and structural

http://www.rostlab.org/services/SNAP/ 36

SNPs3D Trained classifier Evolutionary, biochemical 
and structural

http://www.snps3d.org/ 51

PhD-SNP Trained classifier Evolutionary and 
biochemical (indirect)

http://gpcr2.biocomp.unibo.it/~emidio/
PhD-SNP/PhD-SNP_Help.html 

37

*Also makes predictions for synonymous and non-coding variant effects: for example, splicing. MAPP, Multivariate Analysis of 
Protein  Polymorphism; polyPhen, polymorphism phenotyping.
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substitutions but all of the observed amino acids are 
small, then MAPP would predict that a mutation would 
be tolerated if the new amino acid were small but not tol-
erated if it were large. Such predictions are at least semi-
quantitative: the magnitude of the biochemical deviation 
between the evolutionarily observed and mutant amino 
acids correlates with the extent of functional impairment 
(for LacI mutants) and disease severity (for anaemia-
causing HBB mutants)27. In this way, both the rates and 
biochemical properties of changes that are observed (or 
not observed) throughout evolution are informative.

The case for non-coding variation analysis. Published 
analyses that predict deleteriousness of genetic varia-
tion within individual genomes have largely focused 
on protein-altering variants, as these are the most 
amenable to functional interpretation. However, non-
coding variants constitute the overwhelming majority 
of human genetic variation3. Furthermore, collective 
GWAS evidence shows that ~88% of trait-associated 
variants of weak effect are non-coding54. Although only 
a few are defined at the molecular level (for example, 
REF. 55), this supports the hypothesis that most weak-
effect causal variants are non-coding. This hypothesis 
is further supported by an abundance of heritable fac-
tors altering gene expression56 that are enriched within 
trait-associated loci57 and the observation that regulatory 
variation is a major driver of morphological differences 
between closely related species58,59. Additionally, evolu-
tionary analyses demonstrate that approximately fivefold 
more non-coding positions exist than coding positions 
in human genomes that have been subject to purifying 
selection17,18,60. Finally, although likely to explain a pro-
portionally larger fraction of more severe phenotypes29, 
estimates of the fraction of Mendelian diseases caused 
by protein alterations are skewed upwards by ascer-
tainment bias and an absence of failed protein-centric 
disease studies in the publication record. Conversely, 
the existence of numerous large-effect regulatory vari-
ants61–63 — despite the increased difficulties associated 
with their discovery — confirms at least that a substan-
tial fraction of mutations underlying Mendelian dis-
eases is non-coding. Analytical restrictions to coding  
mutations are therefore untenable in the long term.

Nucleotide-sequence-based predictions in non-coding  
and coding DNA. As for protein-altering variants, 
comparative genomics is a central component in 
deleteriousness prediction for non-coding variants. 
However, the phylogenetic scope for non-coding 
sequence comparisons is typically narrower than that 
for proteins. Whereas many human proteins have 
homologues in bacteria and most have homologues in 
vertebrates, only a small fraction of non-coding bases 
in human genomes align to fish genomes64, and there 
is no detectable conservation outside vertebrates65. 
Consequently, the primary scope used for human non-
coding sequence analysis is mammalian, and the first 
global insights regarding non-coding deleteriousness 
emerged from comparisons with the mouse genome. 
These efforts estimated that ~5% of positions in human 
genomes, a minority of which are coding, exhibit evi-
dence of purifying selection throughout mammalian 
evolution18. Subsequently, sequencing of dozens of 
mammalian genomes has refined this estimate upwards 
to 7–8%17,60 and has begun to identify constraints on 
specific nucleotides with increasing resolution66–68.

There are now numerous methods to infer  
nucleotide-level constraints in genomic sequence align-
ments20,21,60,66–71 (TABLE 2). These methods differ in detail 
but are united by the principle of estimating observed 
rates of evolutionary change and contrasting these esti-
mates with rates expected for neutral positions; sites 
with fewer substitution events receive higher scores, 
which are indicative of an increased likelihood and/
or intensity of constraint. One important distinction 
to consider in applying any given approach is context 
dependency. Some methods — such as binCons69 and 
phastCons60 — use sliding windows or hidden Markov 
models and consequently the score at each position 
depends partially on the score of its neighbours. This 
is in contrast with other methods — such as Genomic 
Evolutionary Rate Profiling (GERP)67, Gumby 21, 
phyloP66 and Sequence Conservation Evaluation 
(SCONE)68 — that consider each position indepen-
dently. The methods that use sliding windows have the 
advantage of generating ‘smoother’ score distributions 
and are necessary when the signal-to-noise ratio for 
any given position is low. However, they will tend to 

Table 2 | Tools for nucleotide-sequence-based prediction of deleteriousness

Name Type Information URL Refs

phastCons Phylogenetic HMM Evolutionary http://compgen.bscb.cornell.edu/phast/ 60

GERP Single-site scoring Evolutionary http://mendel.stanford.edu/SidowLab/
downloads/gerp/index.html 

67

Gumby Single-site scoring Evolutionary http://pga.jgi-psf.org/gumby/ 21

phyloP Single-site scoring Evolutionary http://compgen.bscb.cornell.edu/phast/ 66

SCONE Single-site scoring Evolutionary http://genetics.bwh.harvard.edu/scone/ 68

binCons Sliding-window scoring Evolutionary http://zoo.nhgri.nih.gov/binCons/index.cgi 69

Chai Cons Sliding-window scoring Evolutionary 
and structural

http://research.nhgri.nih.gov/software/chai 71

VISTA Visualization tool (various scores) Evolutionary http://genome.lbl.gov/vista/index.shtml 70

GERP, Genomic Evolutionary Rate Profiling; HMM, hidden Markov model; SCONE, Sequence Conservation Evaluation.
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confound predictions for neighbouring sites: consider, 
for example, a truly neutral synonymous position flank-
ing a highly constrained non-synonymous position or 
a crucial nucleotide in a transcription factor binding 
site adjacent to a degenerate nucleotide. Furthermore, 
comparative genomic data sets now afford substantial 
amounts of per-position information. Alignments of 
more than 30 mammalian genome draft sequences 
capturing ~6 substitutions per neutral site are readily 
available (see the University of California Santa Cruz 
(UCSC) Genome Bioinformatics website) with steady 
expansions anticipated (for example, the Genome 10K 
Project). Given such data sets, single-position scoring 
methods based on mammalian sequence alignments 
are generally preferable for human SNV analysis.

The relative utility of nucleotide- and protein-based 
approaches can be compared using exome data (for 
example, BOX 1). Recently, we showed that nucleotide 
constraint scores defined by GERP67 provide enrich-
ments for deleterious causal mutations that are simi-
lar to those provided by protein-based annotations for 
two Mendelian diseases72. This was seen in spite of the 
fact that synonymous variants were also evaluated. In 
addition, this approach facilitated quantitative ranking 
of candidates and placed the known causal genes at or 
near the top of candidate lists. This constraint-based 
ranking is unavailable with methods that generate dis-
crete functional predictions (for example, ‘benign’ 
versus ‘damaging’). Surprisingly, these observations 
suggest that nucleotide-level metrics are as powerful 
as protein-based metrics, even without knowledge of 
protein biochemistry. There are at least three potential 
explanations for this finding. First, although the absence 
of functional information may reduce predictive power, 
this may be offset by the elimination of paralogues and 
functionally divergent orthologues that are often part of 
the more diverse alignments used for protein analyses33 

(indeed, a recent study43 showed that choice of phyloge-
netic scope is one explanation for discrepant predictions 
made by protein-based algorithms). Second, absence of 
functional information is actually beneficial when that 
information is misleading; this may occur, for example, 
when a non-synonymous variant appears to be benign 
at the amino acid level but has a deleterious effect on 
splicing73. Finally, quantitative assessments in general 
have advantages over discrete predictions. Importantly, 
each of these explanations may be exploited to improve 
protein-based metrics through more careful sequence 
collection and alignment curation (for example, using 
syntenic relationships to differentiate orthologues 
from paralogues), more comprehensive descriptions 
of molecular function (see below) and by generating  
quantitative predictions.

It is clear that single-nucleotide constraint scores 
have a practical utility for exome studies and that they 
can identify small, functionally enriched subsets of 
both exomes and genomes (BOX 2). However, their use 
in identifying causal variants in non-coding regions 
of whole genomes remains unproven. Encouragingly, 
numerous studies have identified correlations between 
increasing constraint score and decreasing genetic 
diversity at both the population74,75 and individual76 
levels. Such observations demonstrate that non-coding 
sites under constraint throughout mammalian evolu-
tion have been subject to recent purifying selection, 
which is indicative of mutational deleteriousness. 
Strong correlations between constraint scores and 
experimental measures of regulatory functionality also 
exist. These include many examples of constraint-pre-
dicted enhancers with crucial roles in embryonic devel-
opment64,77 and more general correlations between 
non-coding molecular functionality and evolutionary 
constraint19,78. As such, comparative genomic annota-
tions convey a significant amount of site-specific infor-
mation that correlates with both population genetic 
and in vitro assessments of non-coding deleterious-
ness and thus offer clear promise for causal-variant  
discovery in whole genomes.

Experimental approaches
Experimental analyses are generally performed to add 
support to a limited number of candidate causal vari-
ants identified using other information and can provide 
powerful support of causality for a given phenotype. For 
example, this may consist of the in vitro demonstration 
of molecular consequences (such as disruption of expres-
sion or protein folding) or the in vivo recapitulation of 
the human phenotype in a model organism. However, 
experimental approaches are not yet widely used for pri-
oritizing large numbers of candidate variants, primarily 
because experimental analyses of variants are challenging 
to implement and costly to scale. Assessment of coding  
mutations in particular requires the identification of 
a measurable property that associates with function, 
which remains difficult as little is known about the func-
tion of most human proteins. There are, however, at least 
three emerging paradigms for large-scale experimental 
assessment of genetic variants.

Box 1 | GERP and polyPhen score distribution for non-synonymous variants

In the figure, we summarize distributions of protein impact estimates, defined by 
‘polymorphism phenotyping’ (polyPhen, version 1)35,45, and constraint scores, defined  
by Genomic Evolutionary Rate Profiling (GERP)17,67,72, for non-synonymous variants in 
human exome data that were reported Ng et al.8 These data are meant to provide a 
general sense for the effects of variant filtering with commonly used definitions of 
deleteriousness, and other approaches (TABLES 1,2) could be used similarly. Scores from 
polyPhen are binned into three groups, ‘benign’, ‘possibly damaging’ and ‘probably 
damaging’, and are based on a trained classifier using both biochemical and 
evolutionary information. GERP scores are based on genomic sequence alignments  
and measured as ‘rejected substitutions’ (note that the bins were defined arbitrarily), 
indicating the difference between observed and expected (assuming neutrality) rates  
of evolution. Neutral sites tend to score near zero, whereas constrained sites generally 
score positively. The maximum genome-wide score (~5.8) only applies to sites that are 
perfectly conserved across all sequenced mammals, whereas ‘no prediction’ applies to 
sites that are aligned to none or few species (mostly repetitive sequences).
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First, projects such as the Encyclopedia of DNA 
Elements (ENCODE) are applying diverse assays in 
many cell types and conditions to generate functional 
annotations at a genome-wide scale, including protein-
coding genes, non-coding RNAs and cis-regulatory ele-
ments19,79. These data facilitate hypothesis generation 
to guide and prioritize variants based on their overlap 
with molecular features or interactions. For example,  
a candidate causal variant may be observed to disrupt a 
consensus sequence motif within a known binding site 
for a particular transcription factor, rapidly defining a 
specific and testable hypothesis. Additionally, such data 
sets may be sufficient in themselves to identify testable 
associations between common polymorphisms and 
gene expression or protein binding through expression 
quantitative trait loci (eQTLs) and related analyses80–82.

Second, several groups are developing strategies 
whereby variants in regulatory sequences83, RNAs84 
and proteins85 can be studied in a highly multiplexed 
fashion. In these methods, synthetic approaches are 
used to construct mutagenized libraries of a sequence 
of interest that are subjected to massively parallel  
functional characterization (FIG. 3). For example, 
Patwardhan et  al.83 generated synthetic promoter 
libraries that included all possible single-nucleotide 
mutations relative to a reference sequence by cleaving 
off oligonucleotides from a custom microarray (FIG. 3a). 
They then performed in vitro transcription and used 
high-throughput RNA sequencing (RNA-seq) of bar-
codes linked to variant promoters as a measure of their 
transcriptional activity. Fowler et al.85 demonstrated 
high-resolution mapping of protein sequence–function  
relationships by subjecting a degenerate library of pro-
tein variants of a human WW domain to successive 
rounds of phage display and peptide ligand binding and 
used massively parallel DNA sequencing of the library 
at each stage as the readout (FIG. 3b). Such methods 
and their derivatives may prove useful for the experi-
mental ‘pre-evaluation’ of large numbers of potential  
mutations in loci of clinical relevance.

Third, detailed but generically assayed molecular 
phenotypes may be useful to capture and measure 
protein function. For example, cells may be perturbed 
by overexpression or knockdown of specific genes and 
subsequently subjected to high-throughput assess-
ments, such as RNA-seq of transcriptional activity86 or 
chromatin immunoprecipitation followed by sequenc-
ing (ChIP–seq) of transcription factor binding87. The 
extent to which the overexpression of mutant forms of 
the gene recapitulate the phenotype associated with 
overexpression of the wild-type gene or rescue the 
phenotype associated with knockdown of the wild-
type gene may be informative with respect to the 
impact of the mutation on function. A recent analysis 
of deletion mutations of the transcription factor E2F1, 
for example, demonstrated that only loss of the DNA 
binding domain (DBD) changed its genomic bind-
ing profile in MCF7 breast cancer cells88. Consistent 
with the observation that the DBD is the most highly 
evolutionarily constrained region of the protein, these 
data suggest that mutations of the DBD are likely to 
be more deleterious to E2F1 function than mutations 
elsewhere. As the costs of variant gene synthesis and 
sequencing-based assays continue to decline, such 
molecular phenotyping will increasingly provide func-
tional assessments for many mutations in many genes, 
including those for which little or no prior knowledge 
is available.

Interpretive difficulties for experimental characteri-
zation. It is important to recognize that experimental  
predictions, as with computational predictions, are 
informative but often not definitive. For negative 
results, an inevitable concern is whether the experi-
ment was performed in the appropriate context89, 
including: genomic context (that is, dependencies on 
flanking sequence or chromatin state); developmental 
context (that is, dependency on cell type or develop-
mental stage); or organismal context (that is, functional 
consequences of a mutation that are species-specific). 

Box 2 | Distribution of GERP scores within subsets of human genomes

The table provides an overview of Genomic Evolutionary Rate Profiling 
(GERP) score distributions for the genome, exome and different categories 
of single nucleotide variants (SNVs); these data provide a general sense for 
the effects of constraint and the utility of constraint scores to prioritize 
subsets of genomes and variants. For example, a threshold of rejected 
substitutions >5 includes 0.55% of the genome but 20.8% of the exome, 
reflecting the strong enrichment for sites under constraint within 

protein-coding exons. However, as there are ~16.9 million total genomic sites 
with rejected substitutions >5 (0.55% of ~3.08 billion) but only ~6.9 million 
in the exome (20.8% of ~33 million), most sites at this threshold are 
non-coding. Similar arguments apply to variant collections. Note that the 
depletion for ‘no prediction’ in all three variation categories relative to  
the genome is in part due to regions that are both difficult to align to other 
species and difficult to re-sequence (for example, repetitive sequences).

GERP < 0 >0 >1 >2 >3 > 4 >5 No prediction

Exome 19.5% 79.3% 73.5% 65.7% 55.9% 42.3% 20.8% 1.1%

Genome 27.0% 29.2% 18.9% 8.9% 3.8% 1.6% 0.55% 43.8%

Non-coding variation* 43.4% 39.9% 24.5% 10.9% 4.0% 1.4% 0.33% 16.7%

Synonymous variation‡ 61.4% 37.6% 29.1% 20.4% 12.4% 5.6% 1.5% 0.95%

Non-synonymous variation‡ 31.3% 66.6% 58.3% 48.1% 36.8% 23.6% 9.1% 2.0%

*Non-coding variants observed by Keinan et al.117. ‡Coding variants observed by Ng et al.8.
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Figure 3 | High-throughput experimental assessment of variant function.  
a | High-resolution analysis of DNA regulatory elements by synthetic saturation 
mutagenesis. Mutated versions of a regulatory element are synthesized in parallel 
on a programmable microarray, linked in cis to a transcribed barcode and subjected 
to in vitro transcription (IVT). Deep sequencing of barcode-derived RNAs enables 
measurement of the functional impact of non-coding mutations at single-nucleotide 
resolution. b | High-resolution mapping of protein sequence–function relationships 
by phage display of a complex library of sequences encoding variants of a single 
WW domain and multiple rounds of selection consisting of phage binding to a 
peptide ligand via the expressed WW domain. Deep sequencing of the resulting 
library of variant WW domains is applied after each round of selection. This method 
quantitatively assesses the impact of non-synonymous mutations on the binding 
efficiency of the WW domain to its peptide ligand. c |  The binding of a WW 
domain (blue ribbon) to its peptide ligand, with the primers used for sequencing 
numbered and labelled with arrows. RT-PCR, reverse transcriptase PCR. Panel a is 
adapted, with permission, from REF. 83 © (2009) Macmillan Publishers Ltd. Panel b 
is adapted, with permission, from REF. 85 © (2010) Macmillan Publishers Ltd.  
All rights reserved.

R E V I E W S

636 | SEPTEMBER 2011 | VOLUME 12  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved



Conversely, positive experimental results do not neces-
sarily establish causality or deleteriousness. For exam-
ple, a mutation that happens to fall in a promoter or 
enhancer has a reasonable chance of influencing tran-
scriptional regulation, but it is difficult to assess the 
significance of a functional non-coding mutation based 
solely on the magnitude of its impact on transcrip-
tional regulation. The same concern applies to coding 
sequences, in which the experimental observation of a 
proximal molecular impact does not necessarily imply 
causality with respect to a phenotype at the organis-
mal level (for example, nonsense variants that exist 
at high frequencies in many genes31). In both cases, 
experimentally demonstrable molecular functionality 
does not necessarily equate to organismal deleterious-
ness (a similar concern also applies to computational 
assessments).

Challenges and unanswered questions
A major goal will be to develop a unified, quantita-
tive, predictive framework to estimate the prior prob-
abilities for any given mutation to be both functionally 
relevant and disease relevant, accounting for both com-
putational and experimental sources of information. 
A number of challenges must be met for such a frame-
work to succeed, but the following are particularly  
important.

Evolutionary versus experimental annotations. A better  
understanding of the relative value of evolution-
ary annotations versus functional annotations, and 
discrepancies between them, will be important for 
accurate assessments of deleteriousness. ENCODE, 
for example, found only modest correlation between 
constraint estimates and molecular functions in 
human cells19,78. The existence of constrained nucleo-
tides without experimental annotation is not surpris-
ing, as these are likely to be important positions that 
have not been appropriately assayed yet; given the 
number of possible combinations of developmental 
time, cell type and molecular functionality, it is inevi-
table that many functional sites remain experimentally 
uncharacterized. However, the converse — namely, 
experimentally functional sites without evidence for 
constraint — is more problematic. This in part reflects 
truly important functions that appear unconstrained. 
There are structural features of DNA, for example, 
that are under constraint that is undetectable by pri-
mary sequence conservation71, and there are also clear 
examples of important regulatory elements that fail 
constraint-based measures90. However, it is likely that 
there are also many molecular events in cells that are 
biochemically functional but biologically inert, lack-
ing even in phenotypic relevance to the cell, let alone 
the organism12,19,78. For example, although transcription 
factors have been shown to bind to thousands or tens 
of thousands of sites in any given cell type, the expres-
sion levels of relatively few nearby genes change when 
the binding patterns are modified91, suggesting that 
many, or perhaps most, individual binding events have  
minimal downstream effects.

Coding versus non-coding variants. The relative 
importance of coding versus non-coding variants 
is unknown, but it is essential to define appropriate 
weighting schemes for each in disease studies. As 
discussed above, enrichments for coding variants 
in Mendelian disease are biased upwards. However, 
the estimated 5/1 ratio of constrained non-coding 
to constrained coding bases17,18,60 decreases as con-
straint thresholds increase67, suggesting that the ratio 
of non-coding to coding causal variation will decline 
relative to increasing mutational penetrance and dis-
ease severity. Better quantification of both the relative 
abundances and penetrances of coding and non-
coding causal variants is therefore essential. Note that 
such estimates are not necessarily a factor in deciding 
between exome and genome sequencing for any given 
disease. Current cost-to-benefit ratios clearly sup-
port exome sequencing as an approach to efficiently 
study the many traits that primarily result from coding 
alterations (for example, REFS 8,29), in much the same 
way that microarray-based detection of copy number 
variants (CNVs) can be used to identify obviously 
pathogenic variants for some phenotypes without any 
sequencing92. Rather, this question bears on interpreta-
tion and assessment of whole-genome sequences when 
costs decrease to the point that such data are routinely  
obtained.

However, our emphasis here on differential consid-
erations for coding and non-coding SNVs understates 
the complexity of both the genome and of genetic 
variation. For example, ‘non-coding’ spans a diverse 
collection of functional consequences, including both 
transcribed variants (such as non-coding RNA) and 
non-transcribed variants (such as promoters) (FIG. 1). 
Furthermore, many SNVs have more than one poten-
tial functional consequence, such as a non-synonymous 
change that also disrupts a splicing enhancer73. This 
functional diversity, as well as the differential extent to 
which evolutionary constraint operates on each class of 
sequence, renders our simple dichotomy between cod-
ing and non-coding SNVs problematic. Furthermore, 
causative mutations include not only SNVs but also 
structural changes, such as small insertion or dele-
tion events, large CNVs, retrotransposition events and 
inversions3,92,93,94. A unified predictive framework must 
be able to estimate deleteriousness for these types of 
mutations as well.

Tests for accuracy. A major challenge to the develop-
ment and interpretation of deleteriousness predic-
tions is accuracy assessment (‘benchmarking’), which 
requires large collections of true positive (deleterious) 
and true negative (neutral) mutations, ideally collected 
in a manner that is unbiased relative to the methodol-
ogy being evaluated. Several data sources are currently 
used as benchmarks. One such source is mutagen-
esis experiments of individual proteins that generate 
many possible mutations and assess their function, 
as has been performed for several bacterial and viral 
proteins95–97. A second benchmark is gene-specific col-
lections of mutations that associate with disease: for 
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example, HBB variants that result in thalassaemia98  
(FIG. 2) and TP53 mutations that are observed in 
tumours99. Finally, pathogenic variants that have been 
identified for various genes and diseases are collected 
in large-scale databases such as Online Mendelian 
Inheritance in Man (OMIM), Swiss-Prot100 and the 
Human Gene Mutation Database (HGMD)62. Although 
valuable, each of these resources suffers from draw-
backs34. For example, mutagenesis studies of individual 
proteins provide robust mutational assessments for 
those proteins, but the extent to which those estimates 
generalize to other proteins is unclear, especially when 
using a single viral or bacterial enzyme to study the 
functionally diverse human proteome. Conversely, 
databases of known pathogenic variants relate directly 
to human genes and diseases but only include muta-
tions that manifest in particular clinical phenotypes; 
mutations that give rise to lethality, subclinical dis-
ease or a distinct phenotype are often not sampled. 
Benchmarking resources are especially limited for 
non-coding variants, as there are relatively few known 
pathogenic non-coding mutations compared with the 
situation for coding variants, and those that exist often 
reside in regulatory sequences immediately adjacent to 
a small number of genes. Recent technological develop-
ments are likely to improve the depth and breadth of 
experimental assessments of both protein and regula-
tory function, as well as catalogues of defined patho-
genic variants. Such resources will be needed to improve 
the extent to which deleteriousness predictions can be 
benchmarked.

Regulatory element vocabularies. In the same way 
that knowledge of the genetic code greatly increases 
the power to predict the impact that mutations have 
within proteins, richer and more comprehensive 
functional vocabularies for regulatory elements will 
be needed to assess the impact of non-coding vari-
ants. Some examples of this are beginning to emerge. 
Sequence features that are related to splicing regula-
tion73 are generally part of exome studies7,8 and are 
also incorporated into some predictive methods40. 
Additionally, ENCODE19 is generating motif defi-
nitions for a wide range of regulatory element fea-
tures. These data show, for example, that binding of a  
transcription factor to a genomic site harbouring 
a heterozygous SNV in a given individual favours 
the allele that more closely matches the consensus 
sequence (Timothy E. Reddy and Richard M. Myers, 
HudsonAlpha Institute for Biotechnology, personal 
communication). These findings are consistent 
with observations from model organisms that rates 
of evolution of individual nucleotides within pro-
tein binding sites correlate strongly with the level of 
degeneracy of those nucleotides in consensus bind-
ing motifs101–103. In addition, progress is being made 
in identifying long-range regulatory elements (for 
example, REFS 90,104) and matching them to their 
target genes through techniques such as chromosome 
conformation capture105. Accurately pairing regula-
tory elements and genes is particularly important  

for gene-level prediction methods that identify  
disease genes on the basis of aggregate enrichments for 
rare deleterious variants in affected individuals106,107.

Variant interactions. Finally, interactions between 
individual variants and between variants and the envi-
ronment are clearly relevant to accurate genotype– 
phenotype predictions. Molecular characterizations of 
such interactions are emerging in yeast. For example, 
it has recently been shown that multiple transcrip-
tion factor mutations and growth conditions interact 
to modulate sporulation efficiency 108,109. However, 
although promising approaches are being developed 
(see, for example, REFS 106,110), such analyses are 
orders of magnitude more difficult in humans, as 
control and documentation of environmental expo-
sures are limited and the combinatorial possibili-
ties of even two-way genetic interactions are myriad. 
Comprehensive descriptions of molecular interactions, 
including protein–protein interaction111 and gene co-
expression networks112, coupled with both literature 
and automated annotation of pathways and gene func-
tions113, are crucial to tackle this challenge. Such char-
acterizations may take the form of identifying ‘excess’ 
deleteriousness within pathways or network modules, 
similar in some respects to the identification of signifi-
cant excesses of large CNVs observed among individ-
uals with neurological disease93,94. These assessments 
identify groupings of risk variants and provide a start-
ing point to begin addressing the effects of individual 
variants and combinations thereof.

Concluding remarks
Next-generation sequencing has enabled ‘next- 
generation genetics’, wherein variant identification is 
no longer the rate-limiting step. However, the inter-
pretive challenges preventing the optimal exploitation 
of these data are formidable. Although hardly unprec-
edented in quantitative genetics applications, these 
challenges are becoming increasingly important given 
the rapid expansion of genetic approaches for studying 
human disease, including the study of many pheno-
types that were considered to be unapproachable until 
recently6,114.

These challenges also highlight a great irony. The 
core strength of genomic approaches for understanding 
disease is the freedom to make discoveries in previ-
ously unexplored places, replacing informed but biased 
hypotheses with unbiased but generic ones. However, 
as a consequence, every result must be treated with the 
scepticism that is appropriate for an ignorant hypoth-
esis, and bringing down all tests to the lowest common 
denominator comes at a cost of missing important 
discoveries. Importantly, the dichotomy between near 
universal assumptions of ignorance115 or knowledge116 
is a false one. Full realization of the potential for 
genomics to characterize the genetic basis for human 
disease demands a better way to balance these oppo-
sites, removing biases driven by historical accidents, 
false premises or simple myopia but exploiting those 
that reflect genuine biology.
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