
our study that the PPC is a good candidate for
future clinical applications as it contains signals
both overlapping and likely complementary to
those found in M1.
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EPIGENETICS

Multiplex single-cell profiling of
chromatin accessibility by
combinatorial cellular indexing
Darren A. Cusanovich,1 Riza Daza,1 Andrew Adey,2 Hannah A. Pliner,1

Lena Christiansen,3 Kevin L. Gunderson,3 Frank J. Steemers,3

Cole Trapnell,1 Jay Shendure1*

Technical advances have enabled the collection of genome and transcriptome
data sets with single-cell resolution. However, single-cell characterization of the
epigenome has remained challenging. Furthermore, because cells must be physically
separated before biochemical processing, conventional single-cell preparatory
methods scale linearly. We applied combinatorial cellular indexing to measure
chromatin accessibility in thousands of single cells per assay, circumventing the need
for compartmentalization of individual cells. We report chromatin accessibility
profiles from more than 15,000 single cells and use these data to cluster cells on the
basis of chromatin accessibility landscapes. We identify modules of coordinately
regulated chromatin accessibility at the level of single cells both between and
within cell types, with a scalable method that may accelerate progress toward a
human cell atlas.

C
hromatin state is dynamically regulated
in a cell type–specific manner (1, 2). To
identify active regulatory regions, sequenc-
ing of deoxyribonuclease I (DNase I) diges-
tion products [DNase-seq (3)] and assay

for transposase-accessible chromatin using se-
quencing [ATAC-seq (4)] measure the degree
to which specific regions of chromatin are acces-
sible to regulatory factors. However, these assays
measure an average of the chromatin states with-
in a population of cells, masking heterogeneity
between and within cell types.

Single-cell methods for genome sequence (5),
transcriptomes (6–10), DNAmethylation (11), and
chromosome conformation (12) have been re-
ported. However, we presently lack technolo-
gies for genome-wide, single-cell characterization
of chromatin state. Furthermore, a limitation of
most such methods is that single cells are indi-
vidually compartmentalized, and the nucleic acid
content of each cell is biochemically processed
within its own reaction volume (13–16). Process-
ing of large numbers of cells in this way can be
expensive and labor intensive, and it is difficult
to work with single cells, small volumes, and low
nucleic acid inputs.
We recently used combinatorial indexing of

genomic DNA fragments for haplotype resolu-
tion or de novo genome assembly (17, 18). Here,
we adapt the concept of combinatorial index-

ing to intact nuclei to acquire data from thou-
sands of single cells without requiring their
individualized processing (Fig. 1A). First, we
molecularly barcode populations of nuclei in
each of many wells. We then pool, dilute, and
redistribute intact nuclei to a second set of wells,
introduce a second barcode, and complete library
construction. Because the overwhelming ma-
jority of nuclei pass through a unique combi-
nation of wells, they are “compartmentalized”
by the unique barcode combination that they
receive. The rate of “collisions”—i.e., nuclei co-
incidentally receiving the same combination of
indexes—can be tuned by adjusting how many
nuclei are distributed to the second set of wells
(fig. S1) (19).
We sought to integrate combinatorial cellular

indexing and ATAC-seq to measure chromatin
accessibility in large numbers of single cells. In
ATAC-seq, permeabilized nuclei are exposed to
transposase loaded with sequencing adapters
[“tagmentation” (4, 20)]. In the context of chro-
matin, the transposase preferentially inserts adapt-
ers into nucleosome-free regions. These “open”
regions are generally sites of regulatory activ-
ity and correlate with DNase I hypersensitive
sites (DHSs).
In the integrated method, we molecularly

tag nuclei in 96 wells with barcoded trans-
posase complexes (Fig. 1A) (17–19). We then
pool, dilute, and redistribute 15 to 25 nuclei to
each of 96 wells of a second plate, using a cell
sorter. After lysing nuclei, a second barcode is
introduced during polymerase chain reaction
(PCR) with indexed primers complementary to
the transposase-introduced adapters. Finally,
all PCR products are pooled and sequenced,
with the expectation that most sequence reads
bearing the same combination of barcodes
will be derived from a single cell (estimated
collision rate of ~11% for experiments described
here) (fig. S1).
As an initial test, we mixed equal numbers

of nuclei from human (GM12878) and mouse
[Patski (21)] cell lines, performed combinatorial
cellular indexing, and sequenced the resulting
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library. Although at least onemappable read was
observed for most of the 9216 (96 × 96) possible
barcode combinations, most barcodes were asso-
ciated with very few reads. We used a conserv-
ative cutoff of 500 reads per cell (19), retaining
533 barcode combinations for further analysis
(fig. S2A) (range: 502 to 69,847 reads per bar-
code combination; median: 2503). A high PCR
duplication rate (~73% of mappable, nonmito-
chondrial reads) confirmed that the library had

been sequenced to saturation. We estimate that
we recovered 13 to 55% of the molecular com-
plexity that we could expect to recover based on
complexity estimates for bulk, 500-cell ATAC-seq
experiments (4, 19).
If each barcode combination represents either

a mouse or human nucleus, then its correspond-
ing reads should map overwhelmingly to either
the mouse or human genome. Indeed, we ob-
serve that ~93% of 533 barcode combinations

had >90% of their reads mapping to mouse (n =
290) or human (n = 207) (Fig. 1B). In addition,
these data retain signals of chromatin acces-
sibility in relation to nucleosome hindrance of
insertion events (Fig. 1C). Furthermore, 52%
of reads from mouse and 50% of reads from
human single cells overlapped reference DHS
maps [ENCODE (19, 22)] for these cell lines
(20-fold and 34-fold enrichments, respective-
ly) (Fig. 1D and table S1).
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Fig. 2. Single-cell ATAC-seq
deconvolutes human cell-
type mixtures. (A to C)
GM12878/HEK293Tnuclei.
(D to F) GM12878/HL-60
nuclei. [(A) and (D)] Histo-
grams of proportions of reads
mapping to cell type–specific
DHSs that correspond to one
cell type or the other. [(B) and
(E)] Box plots of the overall
fraction of reads mapping to
ENCODE-defined DHSs for
individual cells. [(C) and (F)]
Multidimensional scaling of
single-cell ATAC-seq data using
pairwise Jaccard distances
between cells based on DHS
usage. Cell-type assignments
based on proportions shown in
(A) and (D).

Fig. 1. Schematic of combinatorial cellular index-
ing and validation for measuring single-cell chro-
matin accessibility. (A) Nuclei are isolated and
molecularly tagged in bulk with barcoded Tn5 trans-
posases in wells (different barcodes are represented
by the different colors outlining the nuclei). Nuclei

are then pooled and a limited number redistributed into a second set ofwells. A second barcode (representedby the color filling each nucleus) is introduced during
PCR. (B) Scatterplot of number of reads mapping uniquely to human or mouse genome for individual barcode combinations. (C) Fragment size distribution
for single-cell ATAC-seq versus published bulk ATAC-seq (4). (D) Box plot of the fraction of reads mapping to ENCODE-defined DHSs for individual Patski
and GM12878 cells.
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We next sought to distinguish single cells
from the same species. We mixed pairs of cell
lines (HEK293T or HL-60 versus GM12878),
performed combinatorial cellular indexing, and
sequenced the resulting libraries to saturation
(65%duplicate rate). For themixture of HEK293T
and GM12878, we recovered 748 cells with ≥500
reads (fig. S2B) (range: 502 to 28,712 reads;
median: 1685 reads). Focusing on reads map-
ping to previously defined cell-type exclusive
DHS sites (fig. S3A) (19, 22), we observe a bimo-
dal distribution, with nearly all cells assignable
to one of the two cell types (~95% of 748; defined
by ≥70% of reads mapping to cell type–specific
DHSs corresponding to one cell type or the other)
(Fig. 2A). The fraction of reads mapping to ref-
erence DHSs in single cells was again strongly
enriched [41% (14-fold enrichment) for HEK293T
and 52% (18-fold enrichment) for GM12878)]
(Fig. 2B and table S1). About 57% of 181,379 dis-
tinct sites from the reference DHS maps were
observed as accessible in at least one cell. Some
fraction of these may be spurious overlaps, but
this provides an upper bound on the number of
DHSs for which we recovered accessibility in-
formation. Individual cells ranged in coverage
of this DHS map from 29 to 5890 sites (fig. S4)
(median: 429 sites).
For the mixture of HL-60 and GM12878, we

recovered 700 cells (fig. S2C) (range: 500 to
21,887 reads; median: 1390 reads; 64% dupli-
cate rate). Although both are representative of
the hematopoietic lineage, 94% of cells were
assignable based on the same criteria used for
HEK293T/GM12878 (Fig. 2D and fig. S3B). The
fraction of reads mapping to reference DHSs was

again strongly enriched [55% (16-fold enrich-
ment) for HL-60 and 59% (18-fold enrichment)
for GM12878] (Fig. 2E and table S1). About 46%
of 230,632 distinct sites from the reference DHS
maps were observed as accessible in at least
one cell, with individual cells ranging in cov-
erage from 72 to 4687 sites (fig. S4) (median:
442 sites).
We next examined whether single cells with-

in a heterogeneous mixture could be clustered
in an unsupervised manner. Importantly, at
the level of single cells, chromatin accessibil-
ity is a nearly binary phenomenon (~2 genome
equivalents per cell), in contrast with the dy-
namic range of mRNA transcripts within single
cells. Thus, we reasoned that we would require
observations across each of many single cells
to generate quantitative estimates for accessi-
bility of a particular site in a particular cell type,
within a heterogeneous population.
For each cell-type mixture, we defined the

union of ENCODE DHSs [analogous to how RNA-
seq transcript quantification relies on a catalog
of transcript models (19)] and created a binary
matrix where DHS sites were scored as “used” or
“unused” in each cell. We then calculated Jaccard
distances between pairs of cells on the basis of
the degree of shared DHS usage. Applying multi-
dimensional scaling to these distances, the first
dimension was strongly correlated with the read
depth of each cell (fig. S5) (Spearman’s rho of
~0.95), whereas the second dimension separated
cells consistently with our crude cell-type assign-
ments (Fig. 2, C and F). The extent of discrim-
ination between cell types is proportional to read
depth, but even with relatively few reads, individ-

ual cells can be clustered on the basis of shared
DHS usage alone. To evaluate whether our data
provided reproducible and quantitative estimates
of the accessibility of DHSs, we used GM12878-
assigned cells from all three experiments described
above as biological replicates. For each exper-
iment, we summed the number of cells “using”
each site and compared these counts between
replicates (Spearman’s rho’s of 0.64 to 0.69, or
0.54 to 0.62 when restricted to sites observed
in ≥5 cells in each replicate) and also compared
them with bulk ATAC-seq measurements from
500 GM12878 cells (fig. S6) [Spearman’s rho’s
of 0.61 to 0.7 (4)]. This positive correlation shows
that sites that are more sensitive in bulk ex-
periments are also more commonly observed
in single cells. Furthermore, these correlations
are not far from the range of 0.64 to 0.72 for
replicate bulk measurements from the 500-cell
ATAC-seq libraries.
To identify individual DHSs with significant

differences in accessibility between different
cell types (based on single-cell data from the
GM12878/HL-60 mixture), we performed like-
lihood ratio tests within the framework of a gen-
eralized linear model. We identified 1666 sites
[out of 52,479 DHSs tested (19)] that were differ-
entially accessible at a false discovery rate (FDR)
of 0.05. Interestingly, only about half of these
sites are cell-type exclusive in the reference DHS
maps (381 GM12878-exclusive and 472 HL-60-
exclusive); differentially accessible DHSs are
marginally enriched for GM12878-specific sites
(hypergeometric P = 0.04) and strikingly en-
riched for HL-60 sites (P = 2.2 × 10−15). They are
also larger [1184 base pairs (bp) versus 580 bp
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Fig. 3. Single-cell ATAC-
seq identifies functionally
relevant differences in
accessibility between cell
types. (A) Bar plot for rela-
tive fraction of DHSs
overlapping each chromatin
state (HL-60 versus
GM12878). Gray bars show
frequencies for all sites
tested. Blue bars show
frequencies for differentially
accessible sites. CTCF,
CTCF-enriched element;
E, predicted enhancer; PF,
predicted promoter flanking
region; R, predicted
repressed; T, predicted tran-
scribed; TSS, predicted
promoter region; WE, pre-
dicted weak enhancer. *,
significant difference in
proportions. Values do not
add to 1 because sites can
overlap multiple chromatin
states. (B) Multidimensional
scaling of chromatin accessibility data for 14,533 cells (GM12878/HL-60 mixtures from 13 experiments on four dates). (C) Heat map of hypersensitive site
usage for 10,241 cells (columns) at 21,378 DHSs (rows) (GM12878/HL-60 mixtures). Colors indicate accessibility of sites after latent semantic indexing. Top
color bar is coded by cell-type assignments (green, HL-60; blue, GM12878; black, unassigned). Left color bar indicates modules formed by clustering DHSs.
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median; Wilcoxon rank sum P = 3.4 × 10−247], ob-
served in more cells (10 cells versus 3 cells me-
dian; Wilcoxon rank sum P ≈ 0), and enriched
for “enhancer” (hypergeometric P = 4.3 × 10−12),
“repressed” (P = 1.5 × 10−57), “transcribed” (P =
7.4 × 10−25), and “transcription start site” (P= 5.1 ×
10−3) annotations in GM12878, relative to sites
not identified as differentially accessible (Fig.
3A) (19).
We next linked differentially accessible sites

defined from single cells to the genes they po-
tentially regulate (2) and compared these to genes
differentially expressed between GM12878 and
HL-60 (19). Of 8268 genes linked to ≥1 DHS and
expressed in both cell types, 4095 were differ-
entially expressed and 2211 were linked to ≥1
differentially accessible DHS (FDR 0.05). Al-
though the DHS-gene linkages are imperfect,
we observe a significant overlap of differential-
ly expressed and differentially accessible genes
(1162 genes overlap; hypergeometric P = 4.8 ×
10−4). The genes linked to DHSs identified as
differentially accessible are enriched for lym-
phoid and myeloid lineage annotations—e.g.,
“cytokine signaling” and “antigen processing”
(figs. S7 and S8).
To optimize combinatorial cellular indexing,

we tested 12 conditions on 3 days, always with
GM12878/HL-60mixtures. We collected as many
as nearly 1500 cells in a single experiment, and
we improved the median read depth to >3000

per cell in some experiments (figs. S9 to S11). We
merged chromatin accessibility maps for 14,533
single cells (all GM12878/HL-60) and conducted
multidimensional scaling. Although the actual
mixture proportion varied between experiments,
the clustering of the two cell types was highly
robust to experimental condition (Fig. 3B). With
this full complement of cells, ~96% of 230,632
potential sites in our DHS reference map are
observed as accessible in at least one cell (indi-
vidual cells covering between 4 and 12,333 sites
(median: 664 sites) (fig. S4).
We used latent semantic indexing to reduce

the dimensionality of this matrix [after filter-
ing out low coverage cells and rarely used sites
(19)], yielding a heat map of chromatin access-
ibility for 10,241 cells at 21,378 DHSs (Fig. 3C
and fig. S12). This resulted in two large clades
corresponding to the two cell types, while also
identifying the subset of sites underlying that
separation. Additionally, we observe a number
of smaller modules of DHSs that exhibit coordi-
nately regulated chromatin accessibility. Link-
ing these sites again to the genes they potentially
regulate (2), themajormodules are enriched for
gene ontology terms consistent with the two cell
types (e.g., “osteoclast differentiation” for a mod-
ule more open in HL-60) (Fig. 3C and figs. S13
and S14).
To evaluate cell-to-cell variation within a cell

type, we took the subset of cells classified as

GM12878 and repeated latent semantic index-
ing (19), yielding a heat map of chromatin acces-
sibility for 4118 cells at 22,755 DHSs. Hierarchical
clustering identified four major subgroups of
single cells and seven modules of coordinately
regulated chromatin accessibility (Fig. 4A). These
modules of DHSs are enriched for binding by
particular transcription factors (hypergeometric
FDR 0.10) (fig. S15), in some cases quite strongly,
and are linked to genes associated with immune
response, cell cycle regulation, and other pro-
cesses (figs. S16 and S17). Importantly, although
we included samples from experiments con-
ducted on different days, the cell subtypes do
not cluster by experiment (figs. S18 and S19),
and the enrichments for transcription factor
binding within subtype-defining modules are
apparent even with subsets of the data (figs.
S20 and S21). Sites in modules 1 and 2 are highly
enriched for binding by transcription factors such
as nuclear factor kB (NF-kB) and other factors
downstream of the B cell receptor (19). The four
GM12878 subtypes appear principally defined by
the activation status of these two modules, sug-
gesting that variability across the cells is driven
by NF-kB activity. These results indicate that
even within an apparently homogeneous cell
type, we are able to identify subsets of cells with
differences in their regulatory landscape related
to cell cycle and possibly environmental signals.
Focusing on individual loci within GM12878,
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Fig. 4. Single-cell ATAC-seq identifies GM12878 subtypes. (A) Heat
map of chromatin accessibility measures after latent semantic indexing of
DHS usage shows that GM12878 cells cluster into subpopulations. Mod-
ules of coordinately accessible chromatin accessibility are significantly
enriched for binding of selected transcription factors (TFs) (examples on
right). (B) Detailed depiction of LYN locus. The top shows coaccessibility
scores between the transcription start sites and four putative enhancers
in the region, which are Pearson correlation values of latent semantic

indexing–based accessibility scores between cells, for six DHSs present
in this region. Height and thickness of each loop indicates the strength of
correlation (red, positive; blue, negative). Middle shows in which subtypes
[defined in top bar of (A)] these elements are most often accessible. Bottom
shows ENCODE data for this region from the University of California–Santa
Cruz browser, including transcript model, DHS peaks, chromatin immuno-
precipitation sequencing (ChIP-seq) binding profiles for several TFs, and
predicted chromatin state.
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we observe sets of regulatory sites that exhibit
patterns of coordinated regulation (e.g., LYN,
encoding a tyrosine kinase involved in B cell
signaling) (Fig. 4B), although reproducibility of
these patterns across biological replicates was
modest (fig. S22). Given the sparsity of the data,
identifying pairs of coaccessible DNA elements
within individual loci is statistically challenging
and merits further development.
We report chromatin accessibility maps for

>15,000 single cells. Our combinatorial cellular
indexing scheme could feasibly be scaled to col-
lect data from ~17,280 cells per experiment by
using 384-by-384 barcoding and sorting 100 nu-
clei per well (assuming similar cell recovery and
collision rates) (fig. S1) (19). Particularly as large-
scale efforts to build a human cell atlas are con-
templated (23), it is worth noting that because
DNA is at uniform copy number, single-cell chro-
matin accessibilitymappingmay require far fewer
reads per single cell to define cell types, relative
to single-cell RNA-seq. As such, this method’s
simplicity and scalability may accelerate the char-
acterization of complex tissues containing my-
riad cell types, as well as dynamic processes such
as differentiation.
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VIROLOGY

Avirus that infects a
hyperthermophile encapsidates
A-form DNA
Frank DiMaio,1* Xiong Yu,2* Elena Rensen,3 Mart Krupovic,3

David Prangishvili,3† Edward H. Egelman2†

Extremophiles, microorganisms thriving in extreme environmental conditions, must
have proteins and nucleic acids that are stable at extremes of temperature and pH.
The nonenveloped, rod-shaped virus SIRV2 (Sulfolobus islandicus rod-shaped virus 2)
infects the hyperthermophilic acidophile Sulfolobus islandicus, which lives at 80°C
and pH 3. We have used cryo–electron microscopy to generate a three-dimensional
reconstruction of the SIRV2 virion at ~4 angstrom resolution, which revealed a previously
unknown form of virion organization. Although almost half of the capsid protein is
unstructured in solution, this unstructured region folds in the virion into a single
extended a helix that wraps around the DNA. The DNA is entirely in the A-form, which
suggests a common mechanism with bacterial spores for protecting DNA in the most
adverse environments.

E
xtreme geothermal environments, with tem-
peratures above 80°C, are the habitat of
hyperthermophilic DNA viruses that par-
asitize Archaea (1). These viruses have
more than 92% of genes without homologs

in databases (2, 3), distinct protein folds (4),
and distinct mechanisms of viral egress (5).
The high diversity of virion morphotypes may
underpin virion morphogenesis and DNA pack-
aging, which could determine the high stability of
the virions. Viruses from the family Rudiviridae
(6) consist of a nonenveloped, helically arranged
nucleoprotein composed of double-strandedDNA
(dsDNA) and thousands of copies of a 134-residue
protein. To understand themechanisms stabilizing
rudiviral DNA in natural habitats of host cells,
which involve high temperatures (~80°C) and low
pH values (~pH 3), we used cryo–electron mi-
croscopy (cryo-EM) to analyze the rudivirus SIRV2
(Sulfolobus islandicus rod-shaped virus 2) (6),
which infects the hyperthermophilic acidophilic
archaeon Sulfolobus islandicus (7) (see supple-

mentary materials and methods). Members of
the archaeal genus Sulfolobus maintain their
cytoplasmic pH neutral at pH 5.6 to 6.5 (8, 9).
SIRV2 is therefore exposed to a wide range of
pH values: from about pH 6 in the cellular cy-
toplasm, where it assembles and maturates (10),
to pH 2 to 3 in the extracellular environment.We
performed our studies at pH 6. SIRV2 is stable
over a wide range of temperatures: from –80°C,
the temperature at which the virus can be stored
for years without loss of infectivity, to 80°C, the
temperature of its natural environment. The over-
all morphology of the virion is maintained, re-
gardless of the use of negative-stain imaging at
75°C (11) or cryo-EM with a sample at 4°C before
vitrification (Fig. 1A).
Electron cryo-micrographs of SIRV2 (Fig. 1A)

showed strong helical striations in most of the
virions with a periodicity of 42 Å. We performed
three-dimensional (3D) reconstruction using the
iterative helical real space reconstruction meth-
od (12), after first determining the helical sym-
metry. Only one solution (with 14.67 subunits per
turn of the 42 Å pitch helix) yielded a recon-
struction with recognizable secondary structure,
almost all a helical, and a resolution of ~3.8 Å in
the more-ordered interior, which surrounds the
DNA (fig. S2). The asymmetric unit was a sym-
metrical dimer, the a helices of which were wrap-
ping around a continuous dsDNA. The DNA
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