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methods5–7, which suffer from reliance on capillary sequencing 
that allows function to be assigned to only a small number of 
winning variants. Massively parallel reporter assays build on 
methods such as saturation mutagenesis8 that are similarly limited 
with respect to scalability.

From a technical perspective, underlying the development 
of MAVEs are advances in massively parallel DNA synthesis9 
and DNA sequencing10 that, respectively, enable the multiplex 
construction of genetic variant libraries and the multiplex 
quantification of functional consequences. Using oligonucleotide 
libraries generated by massively parallel DNA synthesis, we 
can now— within a single experiment—program every single-
nucleotide change in a regulatory region or every possible amino 
acid change in a protein. Using next-generation DNA sequencing, 
it is now possible to track and quantify the functional effects of all 
of these variants within a single experiment. Even more recently, 
breakthroughs in genome engineering11–13 have enabled MAVE 
approaches for assaying the functional consequences of variants in 
their native genomic context14. With MAVE methods, the number 
of variants that can be functionally tested increases to hundreds or 
thousands per experiment.

Already, MAVE approaches have shown their utility for 
sequence–function analysis of diverse classes of sequence, 
including enhancers, promoters, mRNA untranslated regions, 
splice sites, and numerous kinds of proteins (Fig. 1). Though 
analogously multiplexed assays have been developed that validate 
thousands of putative regulatory elements at once15 or scan 
endogenous genomic space to dissect novel regulatory elements16, 
we focus here primarily on the dense dissection of sequences of 
interest, that is, measuring the effects of all possible nucleotide 
substitutions in a regulatory element or amino acid substitutions 
in a protein.

Although there is considerable variety in the details of each 
implementation, MAVE experiments share a basic framework, 
with key steps represented in Figure 2: (1) construction of a 
variant library (i.e., allelic series) of the sequence of interest,  
(2) delivery of this variant library to an in vitro or in vivo system, 

Genome sequencing is now routine, and tools for annotating gene 
structures and regulatory elements are becoming increasingly 
mature. Yet in this time of genomic plenty, researchers remain 
poor at predicting genotype–phenotype relationships, that is 
the consequences of genetic variation. Which single-nucleotide 
changes will affect gene regulation? Which amino acid changes will 
affect protein function? Under what circumstances do the resulting 
biochemical phenotypes give rise to organismal phenotypes? For 
regulatory, protein-coding, and organismal phenotypes, what 
is the distribution of effect sizes within the space of all possible 
sequence variants? What risk does each confer for disease, 
and to what degree do they affect characteristics such as age of 
onset and severity of disease? Although methods for answering 
these questions by computational prediction have proliferated, 
their effectiveness is limited, and the conventional approach to 
confirm that an individual variant has a meaningful biochemical 
or organism-level effect is still to assay it in an in vitro system 
or model organism1. This one-by-one, post hoc approach does 
not scale to the vast numbers of genetic variants that are being 
discovered each day by clinical exome and genome sequencing.

Within the past decade, various innovations have enabled the 
assignment of functional effects to hundreds to thousands of 
sequence variants in a single, highly multiplexed experiment; 
here we term these ‘multiplexed assays for variant effects’, or 
MAVEs. MAVE experiments have mapped sequence–function 
relationships with base-pair resolution for both proteins and 
regulatory elements in the form of deep mutational scans2 
and massively parallel reporter assays3, respectively. Deep 
mutational scans build on low-throughput predecessors such as 
alanine scanning, in which each variant is cloned and assayed 
individually4, and surveys of variant libraries by protein-display 
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libraries. Cost-effective, array-based DNA synthesis technologies 
are still improving in terms of the length and quality of their 
products. Despite this, the ability to program complex variant 
libraries from arrays has facilitated much of the MAVE work of the 
past decade. There are many ways by which array-derived libraries 
can be used to program variant libraries for MAVE experiments. 
For example, all possible alternative codons can be programmed 
on array-derived primers and incorporated into a coding sequence 
by sequential primer extensions from a wild-type sequence21 or by 
Gibson assembly22.

Delivery of the variant library
Variant libraries can be introduced to populations of cells via 
episomes or by insertion into the genome. If one is measuring 
regulatory activity via transcribed barcodes (Fig. 2, left), a high 
multiplicity of delivery per cell (i.e., multiple episomal or lentiviral 
reporters in a single cell) is permissible, if not desirable. However, 
in assays where the effect of a variant is assessed on the basis of 
the phenotype of its host cell (Fig. 2, right), the method must 
limit the number of alleles delivered per cell to one to avoid 
confounding the impact of any single variant. For bacteria- and 
yeast-based assays, alleles can be delivered by plasmid because 
the contribution of cotransformed cells is negligible. Delivery of a 
single allele to a mammalian cell is more challenging. Alleles can 
be randomly inserted in the genome by viral transduction23,24 at 
a multiplicity of infection of less than one, or by targeting only 
one locus for integration via integrase- or recombinase-mediated 

(3) the functional assay (i.e., the stratification of variants by 
function), (4) sequencing to quantify each variant’s representation 
in the context of the assay, and (5) calculation and calibration of 
functional scores for each variant. Ideally, this workflow results 
in sequence–function maps that capture the effect size of every 
possible variant at every position in the sequence of interest, with 
respect to the function assayed and potentially its correlates as well 
(e.g., clinical phenotype) (step 6 in Fig. 2). Below, we discuss each 
of these steps in greater detail.

Construction of a variant library
It is challenging to generate a variant library (also referred to as 
an allelic series) that uniformly represents all possible nucleotide 
or amino acid substitutions in an efficient and cost-effective 
manner. Classic methods such as error-prone PCR suffer from 
polymerase bias17. Doped oligonucleotides are limited in length 
(~200 bp), and although they can produce uniform libraries, 
methods that rely on individually synthesized oligonucleotides 
(i.e., one or two primers for each programmed mutation of 
a single base or codon) are costly and labor-intensive18–20. 
However, despite these limitations, these remain viable options 
for constructing variant libraries of both regulatory and protein-
coding sequences.

In 2004, Cleary et al.9 demonstrated that the products of 
microarray-based DNA synthesis can be used in a preparative 
rather than analytical fashion—that is, they can be released from 
the array surface and used as high-complexity oligonucleotide 
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Figure 1 | Multiplexed assays for variant effects (MAVEs) throughout the central dogma. In the past decade, MAVEs have functionally tested at least tens to 
hundreds of thousands of variants across diverse sequences corresponding to all parts of the central dogma. Gene regulatory elements such as enhancers, 
promoters, and untranslated regions (UTRs) have been dissected, as have regions that affect splicing and RNA stability. All possible amino acid changes 
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Although currently somewhat inefficient, this approach has the 
major advantage of enabling variants to be assayed in their native 
genomic context.

insertion25,26. We have also used CRISPR/Cas9 genome editing 
to introduce libraries of variants to their endogenous locus, such 
that ploidy limits the number of copies introduced per cell14. 
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Figure 2 | The key steps of MAVE. Though diverse, all MAVE experiments rely on the same steps: (1) Construction of a variant library or allelic series of the sequence 
of interest. These variants might include all possible amino acid changes in a protein or all single-nucleotide changes in a regulatory element. (2) Delivery of this 
variant library to a model system. Variant libraries can be delivered episomally or via genomic integration by genome editing, by random insertion, or at a safe 
harbor locus. (3) A functional assay to stratify variants by function. Effects on RNA expression from variant regulatory sequences are measured by using sequencing 
to count transcripts under the influence of each variant. In protein MAVEs, assays are used that separate coding sequences for functional versus nonfunctional 
variants. (4) Sequencing to quantify each variant’s representation in the context of the assay. For regulatory sequences, DNA and RNA that tag each variant can be 
sequenced to quantify effects on transcriptional output. Protein-coding variants (or variant-associated tags/barcodes) are sequenced before and after functional 
selection. (5) Calculation and calibration of functional scores for each variant. Sequencing read counts must be converted into a score for each variant. These 
scores range over a distribution of all possible effect sizes, and this distribution can be benchmarked by variants of known effect. (6) The genotype–phenotype 
relationship at every position in the interrogated sequence is represented in sequence–function maps.
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variant in the mutagenized regulatory element or protein via 
subassembly28,34,47 or long-read sequencing (L.M. Starita,  
M. Kircher, J. Underwood & J. Shendure, unpublished data). 
After barcodes have been linked to variants, only the barcodes 
need be sequenced to track or quantify the variants.

Calculating and calibrating functional scores for each 
variant
In order for MAVE experiments to be readily interpreted, the 
number of sequencing reads for each variant must be converted to 
a meaningful functional score. Multiple statistical models exist to 
convert read counts into scores48–51, including simple but effective 
ratios of variant frequencies in RNA/DNA or selected/unselected 
populations.

A powerful and unique aspect of MAVE experiments, relative 
to conventional one-by-one functional assays, is that they result 
in a distribution of effect sizes for a large number of potential 
variants of a sequence of interest, all generated within a single 
experiment. To interpret this distribution, ideally one should 
compare a variant against benchmarks of known or expected effect. 
In protein MAVEs, stop codons represent the worst outcome, 
whereas synonymous changes are expected to have neutral effects. 
These can be used to validate and calibrate the distribution of 
observations, as well as to quantify uncertainty in measurements. 
For regulatory MAVEs, well-characterized regulatory motifs 
can be used as positive controls in noncoding MAVEs, whereas 
scrambled sequences with no expected regulatory effect can be used 
as negative controls52. The remaining variants of unknown effect 
are then compared to such controls. For disease-relevant sequences, 
previously observed pathogenic and benign substitutions can be 
used to calibrate MAVE scores for use in a clinical context45,53. 
We predict that the increase in the number of available human 
genotype–phenotype data sets, such as that generated by the Exome 
Aggregation Consortium for estimating allele frequencies54, and 
the expansion of ClinVar as a source for benign and pathogenic 
substitutions55 will allow scientists to better calibrate and interpret 
the dense sets of experimental variant effects resulting from MAVEs 
of disease-relevant proteins and regulatory elements.

The future of MAVE
As the progress of human genetics is increasingly limited 
by the interpretation of genetic variants rather than by their 
ascertainment, we predict that the adoption and application of 
MAVE experiments will accelerate in the coming years. Ideally, by 
the 20th anniversary of Nature Protocols, sequence–function maps 
for thousands of proteins and regulatory elements56–58 will have 
been generated at single-residue resolution.

Such high-resolution sequence–function maps may provide the 
substrate for training more accurate computational models for 
directly predicting the impact of genetic variation on phenotypes. 
We are already observing this potential. For example, a model 
trained on the few hundred thousand splice sites in the human 
transcriptome59 is less accurate than one trained on much 
larger data sets created via MAVE-like experiments designed to 
learn the rules of splice-site selection from millions of synthetic 
exons30. By revealing relationships between regulatory sequence 

Stratification of variants by function
The quality of MAVE measurements hinges on the ability of a 
functional assay to accurately stratify variants by their impact 
on the biochemical or cellular activity of interest. The design 
and validation of a well-performing functional assay is perhaps 
the most challenging aspect of implementing MAVEs. Broadly 
speaking, the design considerations are different for regulatory 
elements than for protein-coding sequences.

The impact of regulatory-sequence variation is most often 
stratified by changes in the transcriptional output of a reporter 
gene. To assess the effect of programmed regulatory variants on 
gene regulation, targeted RNA-seq can be used to count cis-linked 
reporter transcripts that contain a barcode uniquely paired with 
a specific variant27. For example, for enhancer reporter assays, 
regulatory variants might increase or decrease transcriptional 
activation of associated barcodes, relative to the wild-type 
enhancer22,27,28. Similar approaches have also been used to 
measure variant effects on splicing, wherein the regulatory variants 
might also serve as the barcode14,29,30. Alternatively, a fluorescent 
reporter protein can be used as a proxy for RNA expression, with 
cells separated into brightness bins by fluorescence-activated 
cell sorting31,32. In this case, the variants present in each bin can 
be quantified from the sorted DNA and inferred to have either 
increased or decreased expression of the reporter gene.

Designing suitable assays for protein MAVEs is more 
challenging. Protein MAVEs generally require delivery of one 
construct per cell, and protein function needs to be tied to either 
cellular growth or reporters that can be sorted by flow cytometry. 
Though each assay is highly specific to the protein of interest, 
recurring themes in the functional assays that are used for protein 
MAVE include protein display and capture33–35, antibiotic 
resistance22,36,37, cellular growth38–40, viral infectivity41–43, and 
protein- or antigen-binding affinity44,45.

Looking to the future, we predict the development of new 
functional assays in two complementary directions. First, to enable 
the effective scaling of MAVEs to larger swaths of the proteome, we 
predict that MAVEs that measure generic protein properties such as 
stability or localization will be of great utility. Second, to accurately 
measure the effects of variants on genes associated with disease risk, 
there will be a strong incentive to develop multiplexing-compatible 
assays that specifically model the activities of a protein that are 
thought to be most relevant to its role in disease46.

Sequencing to count variant frequency
After stratification in a functional assay, MAVEs rely on massively 
parallel DNA sequencing to provide a digital ‘count’ for each 
variant. Variants (or associated barcodes) are amplified from the 
functionally stratified DNA or RNA and sequenced to determine 
the frequency of each in each post-assay sample.

Provided that the assay results in changes in the representation 
of variants, the mutagenized region can be sequenced directly33. 
However, if the variant is not part of the assay ‘output’, or if 
the mutagenized region is long and cannot be easily covered 
by cost-effective sequencing platforms, then each mutant can 
be tagged with a short barcode for the purposes of readout/
quantification27. Such barcodes can be linked to each 

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1786 | VOL.11 NO.10 | 2016 | NATURE PROTOCOLS

PERSPECTIVE

scattered across the genome. Such experiments have the potential 
to shed light on how epistatic effects influence phenotypic traits, 
which at present remains poorly understood.

Massively parallel functional dissection of proteins and 
regulatory elements generates empirical measurements of the 
consequences of thousands of variants per experiment. The 
distributions of effect sizes and sequence–function maps inform 
biology and may have a critical role in the clinical interpretation 
of genetic variation. We anticipate that as methods pioneered 
over the past 10 years are scaled up over the next decade, MAVEs 
may enable measurement of the functional consequences of 
millions to billions of genetic variants.
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