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The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse
fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances
associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low
relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with
multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To
demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight
cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an
estimated per-base error rate of 8.4 3 10–6 in cell lines and 2.6 3 10–5 in clinical specimens. False-positive mutations in the
single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-
guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for
mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-
frequency point mutations (0.2%–4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS
p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%–1.4%), and NRAS p.Q61R (colon, 4.7%). We an-
ticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency
mutations in both research and clinical settings.

[Supplemental material is available for this article.]

Genetic heterogeneity underlies phenotypic variation, evolution,

and human disease. In multicellular organisms, both germline

variation and somatic mutation can lead to phenotypic differ-

ences. In humans, somatic mutation in particular can lead to be-

nign phenotypic variation as well as to a variety of clinically im-

portant conditions, including all types of cancer. In a given tissue

sample, clinically informative mutations may be present at a low

frequency because of non-neoplastic cell admixture or tumor

heterogeneity (Navin et al. 2011; Carter et al. 2012; Gerlinger et al.

2012; Nik-Zainal et al. 2012). Furthermore, recent pioneering

studies have explained the rapid emergence of resistance to tar-

geted therapy in colon cancer by showing that drug-resistance

mutations may be present at a very low frequency prior to treat-

ment initiation (Diaz et al. 2012; Misale et al. 2012), although the

generality of this phenomenon remains to be established. Post-

zygotic mutations also have implications for human disease be-

yond cancer; for example, some developmental disorders can be

caused by somatic mutations, as was recently shown for the over-

growth syndromes MCAP and MPPH (Riviere et al. 2012) and HME

(Lee et al. 2012). Subclonal variation also has important conse-

quences in populations of microorganisms, where low-frequency

variants can confer drug resistance or facilitate immune evasion.

A wide variety of methods have been developed to identify

and characterize genetic variation, including, but not limited to

allele-specific PCR, mass spectrometry, microarrays, and DNA se-

quencing. In general, however, these methods are designed to

detect heterozygous and homozygous variation and have poor

sensitivity for variation present at lower frequencies. The sensitive

and accurate detection of subclonal genetic variation remains

challenging, as this necessarily requires a method that is capable of

processing a large number of DNA molecules and sensitively

identifying a variant at low relative abundance without an excess

of false-positive calls. To address these challenges, other innovative

methods have been developed, including phenotypic screening,

COLD-PCR (Li et al. 2008; Milbury et al. 2012), the random muta-

tion capture assay (Bielas and Loeb 2005), and BEAMing (Dressman

et al. 2003). However, these methods are generally limited by some

combination of technical complexity, poor sensitivity to variants

below 1% frequency, and restriction to one or a small number of

mutations interrogated per assay.

The recent advent of massively parallel DNA-sequencing

technologies, which have dramatically decreased cost and in-

creased throughput, has transformed many fields, including the

study of population genetic variation (Tennessen et al. 2012), gene

expression (Mortazavi et al. 2008) and its regulation (Ernst et al.

2011; Patwardhan et al. 2012), and the genetic basis of rare (Ng

et al. 2010) and common (O’Roak et al. 2012b) disease. These

methods also have attractive properties for the study of subclonal

variation, including throughput on the order of 1,000,000,000

molecules per run and a separate readout for each molecule pro-

cessed. However, the application of massively parallel sequencing

to detecting subclonal variation generally faces two technical

challenges. First, massively parallel sequencing instruments typ-

ically suffer from high per-base substitution error rates, hampering
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their specificity for detecting low-frequency variants. Second,

whereas throughput has improved substantially, whole-genome

sequencing is not practical because of the size of mammalian ge-

nomes and, consequently, the high sampling depth required for

detecting low-frequency variation (typically addressed by targeted

sequencing).

Several groups have sought to increase the sensitivity of mas-

sively parallel sequencing for low-frequency variation by carefully

modeling error processes (Druley et al. 2009; Harismendy et al. 2011;

Flaherty et al. 2012; Gerstung et al. 2012); however, such analytical

methods do not actively correct errors that occur during the prep-

aration and sequencing processes. An alternative approach, de-

veloped by us and others, is to perform ‘‘single molecule tagging’’

to mark sequence reads derived from a common progenitor mol-

ecule (that is, the same genomic equivalent in source DNA) (Hiatt

et al. 2010; Casbon et al. 2011; Fu et al. 2011; Jabara et al. 2011;

Kinde et al. 2011; Kivioja et al. 2012; Shiroguchi et al. 2012), and

to subsequently use this information to guide consensus calling

on a molecule-by-molecule basis (Hiatt et al. 2010; Jabara et al.

2011; Kinde et al. 2011). However, these methods have generally

been either completely untargeted or targeted to only a single lo-

cus, and to our knowledge there are no reports integrating single

molecule tagging with multiplex targeted sequencing.

Multiplex targeted sequencing has also been an area of

extremely active effort (for review, see Mamanova et al. 2010).

Emerging methods for multiplex targeted sequencing with par-

ticular emphasis on the ability to detect sub-clonal variation have

been largely aimed at cancer. These include multiplex hybrid cap-

ture (Lipson et al. 2012; Wagle et al. 2012) and highly multiplexed

PCR (Tewhey et al. 2009; Harismendy et al. 2011; Forshew et al.

2012). However, each of these methods has important drawbacks

that limit practical utility. Hybrid capture typically entails a com-

plex and time-intensive workflow, high per-sample reagent costs,

and limited flexibility to reformulate the protocol as the regions of

interest change over time. Highly multiplexed PCR often relies on

complex instrumentation (Tewhey et al. 2009; Forshew et al. 2012)

and may be restricted to a limited number of target genes. Fur-

thermore, to maximize generality, an effective method for sensi-

tive multiplex targeted sequencing must also be robust to relatively

small amounts and poor quality of source DNA such as that iso-

lated from formalin-fixed, paraffin-embedded (FFPE) tissue.

We therefore sought to develop a massively parallel sequencing-

based method for the detection of low-frequency variation with

the following characteristics: (1) minimal error rates via single

molecule tagging, (2) targeted to genomic regions of interest, (3)

multiplexed across many such regions, (4) simple and scalable

experimental protocol, and (5) modular and cost-effective target

enrichment reagent. The resulting method, termed smMIP (for

single molecule Molecular Inversion Probes), combines the MIP

strategy for targeted capture (Turner et al. 2009; Shen et al. 2011;

O’Roak et al. 2012a) with single molecule tagging (Hiatt et al. 2010;

Casbon et al. 2011; Fu et al. 2011; Jabara et al. 2011; Kinde et al.

2011; Kivioja et al. 2012; Shiroguchi et al. 2012). MIPs represent an

attractive platform for targeted capture because of their very low

per-sample cost, workflow simplicity, target-set modularity, and

low sample input requirements. Single molecule tagging, on the

other hand, enables consensus calling for single genomic equiva-

lents present in the input material, thereby facilitating both highly

sensitive variant calling and precise quantitation of mutation fre-

quency. The combination of MIPs and single molecule tagging

form the basis for an ultra-sensitive, targeted sequencing assay that

has additional attractive characteristics from the standpoint of

practicality, e.g., speed, ease of use, and compatibility with small

quantities of degraded DNA.

To validate our method and establish its utility in a practical

context, we designed molecular capture/tagging probes (smMIPs)

targeting the coding sequences of 33 cancer genes in which clini-

cally informative mutations may occur. We applied these probes

to the targeted capture, sequencing, and mutational analysis of 53

specimens in parallel, comprising 45 clinical cancer specimens and

eight HapMap DNA mixtures. We demonstrate that smMIPs en-

able highly accurate base-calling with substitution error rates be-

low one in 10,000, sensitive and precise detection of subclonal

variation, and accurate and comprehensive genotyping of clini-

cally informative variation at clonal and subclonal frequencies. We

also demonstrate that the smMIP assay is practical, highly mul-

tiplexed and easily scaled, and is compatible with a desktop se-

quencing instrument for potential rapid return of results in a

clinical setting.

Results

Multiplex targeted sequencing using smMIPs

We designed and procured a pool of 1312 smMIP oligonucleotides

targeting the coding sequences of 33 cancer-related genes (Sup-

plemental Table S1; MacConaill et al. 2009; O’Roak et al. 2012a).

These smMIPs tiled a total of ;125 kb of genomic sequence, in-

cluding 80,384 of the 81,190 (99%) coding base pairs (bp) of the 33

targeted genes. Targeted capture with smMIPs involves a standard

MIP protocol for ‘‘library-free’’ sequencing (Turner et al. 2009; Shen

et al. 2011) with slight modifications (Fig. 1). Following the post-

capture PCR amplification, samples are subjected to massively

parallel sequencing using the Illumina platform and analyzed

using a custom pipeline. Our strategy involves two layers of in-

dexing, with one index sequence (the ‘‘sample index’’) resolving

capture products from distinct source DNAs and another (the

‘‘molecular tag’’) resolving reads derived from distinct genomic

equivalents within individual source DNAs (Supplemental Note

S1). Before alignment to the reference genome, overlapping re-

gions of read-pairs are reconciled to produce ;152-nt forward-

reverse reads (‘‘fr-reads’’). After alignment, the molecular tag is

used to group fr-reads, and groups of fr-reads form the basis for

highly accurate single molecule consensus reads (‘‘smc-reads’’).

All comparisons that we describe are between fr-reads and smc-

reads. To our knowledge, this is the first description of molecular

tagging integrated with MIPs, and, more generally, with a large-

scale multiplex targeted capture strategy.

To validate the smMIP method, we simultaneously applied it

to two sets of samples. First, to assess sensitivity and positive pre-

dictive value and the extent to which we could precisely quantify

low-frequency variants, we performed smMIP-based targeted se-

quencing on genomic DNA from two HapMap cell lines (NA12892

and NA19239) and six mixtures of these two gDNAs. Second, to

explore the practical utility of the method, we also applied smMIP-

based targeted sequencing to a panel of 47 genomic DNA isolates

from clinical specimens encompassing a wide range of cancers

(Table 1; Supplemental Table S2). All of the nonhematologic DNA

isolates were obtained from FFPE-treated tissue (42 of 47 clinical

specimens). Importantly, the FFPE specimens were not selected for

quality in any way, with most samples isolated from 1 to 3 yr prior

to our experiments, and included material that had been isolated

as long as 8 yr prior to our experiments and had been processed

into genomic DNA as long as 5 yr after FFPE treatment. These
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specimens thereby represent a stringent and realistic test of ‘‘real-

world’’ method performance. We performed 55 capture reactions

in parallel, using ;500 ng of genomic DNA per capture, and carried

out sequencing and analysis as outlined above. Two clinical spec-

imens failed to yield sufficient on-target sequence during quality

control and were excluded from further analysis, resulting in a

success rate of 96% (45 of 47).

Method performance

We first sought to assess performance of the smMIP assay with

respect to sensitivity and positive predictive value for clonal vari-

ation and uniformity of target enrichment. Because of the het-

erogeneous nature of the specimens, the number of sequencing

reads obtained per sample varied from 1 to 16 million reads (Sup-

plemental Fig. S1). However, 77% of samples (41 of 53) were within

a threefold range, and this distribution could likely be improved by

automated pooling (Supplemental Note S2). Fr-reads were then

aligned to the reference genome and processed using a custom

analysis pipeline to yield smc-reads.

We first explored coverage of targeted regions, finding that

mean smc-read coverage of the targeted coding bases was 35383

across the HapMap samples and 10513 across the clinical speci-

mens (Fig. 2; Supplemental Note S3). On average, smc-reads were

comprised of 2.03 fr-reads in cell line samples, 1.21 fr-reads in fresh

clinical samples, and 2.79 read-pairs in FFPE clinical samples (Sup-

plemental Fig. S2). However, some samples exhibited a much higher

rate of fr-reads per smc-read, which was likely due to degraded DNA

leading to low-complexity capture. Thus, given a certain sequencing

depth, the number of fr-reads per smc-read is directly related to

capture complexity and can serve as a useful quality control metric.

We then used smc-reads to call clonal genotypes using

established tools (McKenna et al. 2010) and, for the HapMap

samples, compared our calls to 1000 Genomes (‘‘1KG’’) pilot project

genotypes (The 1000 Genomes Project Consortium 2010). For

NA12892, we detected 24 of 25 1KG variant sites; the remaining

position was not adequately covered in our data. After discarding

three positions that were systematically misgenotyped by our as-

say (caused by capture of paralogous sequence and subsequent

misalignment), we detected two additional variant positions; these

calls were supported by manual inspection of more recent 1KG

data. For NA19239, we detected 41 of 44 1KG variant sites; the

remaining three positions were not adequately covered in our data.

Two additional sites had variant genotypes and were again sup-

ported by newer 1-KG data. Therefore, based on this limited com-

parison, our assay is highly accurate at adequately covered posi-

tions. Considering all targeted sites, we estimate the sensitivity of

our assay for clonal homozygous or heterozygous variation to be

93%–96%, and the positive predictive value to be near 100%.

Subclonal variant detection

To assess whether the smMIP assay was capable of sensitively

detecting and accurately quantifying variants present at subclonal

frequencies, we applied it to six synthetic mixtures of genomic

DNA from the two HapMap cell lines combined in a twofold serial

dilution from 1:8 to 1:256 (resulting in low-abundance genome

alternate allele frequencies of ;11% to ;0.2%). We adopted a

custom variant calling strategy to detect subclonal variation and

then compared the expected variant frequency to that observed in

smc-reads (Fig. 2C). In general, we observed close agreement be-

tween the expected and observed frequency for positions with at

least 1003 smc-read coverage (R = 0.94), with the deviation from

expected frequency largely explained by sampling statistics (Sup-

plemental Fig. S3).

Figure 1. Schematic of smMIP method. (A) Molecular inversion probes
(MIPs) consisting of two 16–24 nt ‘‘targeting arms’’ (dark gray) joined by
a constant 28-nt ‘‘backbone’’ sequence (light gray) and a 12-nt de-
generate ‘‘molecular tag’’ (red) were designed for the coding exons (light-
blue rectangle) of 33 cancer-related genes. Targeting arms were com-
plementary to sequences flanking individual regions of interest, each 112
nt in length. (B) Probes are pooled, hybridized to genomic DNA, and
polymerase and ligase were added to ‘‘gap-fill’’ the reverse complement
of the genomic DNA to which the probe is hybridized (light-blue) and
ligate the probe into a single-stranded circle. (C ) After exonuclease
treatment and PCR, sequencing library molecules consist of platform
compatibility (black), probe backbone (light gray), targeting arm (dark
gray), copied target (light blue), molecular tag (red), and sample-specific
index introduced during PCR (green). Massively parallel sequencing is
used to collect three reads (dark blue). (D) Overlapping read-pairs are
reconciled to form ‘‘fr-reads’’ (dark blue), assigned to samples via the
sample-specific index sequence (green) and individual capture events via
the molecular tag (red). (E ) Groups of fr-reads assigned to the same probe
via alignment to the reference genome and sharing the same molecular
tag and sample index form a ‘‘tag-defined read group’’ (TDRG). Random
errors (yellow) that occur during library construction and sequencing may
be present in some members of the TDRG at some positions. (F ) TDRGs are
used to call a single molecule consensus sequence (‘‘smc-read’’) for the
captured target sequence that is robust to such errors.

Table 1. Summary of clinical samples

Cancer type Number of samples

Colorectal/rectal adenocarcinoma 18
Non-small cell lung cancer 11
Melanoma 7
Gastrointestinal stromal tumor 4
Myeloproliferative disordera 3
Acute myeloid leukemiaa 2
Urothelial carcinoma 1
Ovarian adenocarcinoma 1

Tissue samples obtained during routine clinical practice and processed by
the University of Washington Department of Laboratory Medicine Clinical
Molecular Genetics Laboratory or Hematopathology Laboratory.
aAll DNA isolates with the exception of the five total myeloproliferative
disorder (i.e., polycythemia vera) and acute myeloid leukemia samples
were prepared from FFPE tissue.

Multiplex detection of low-frequency variation

Genome Research 3
www.genome.org

 Cold Spring Harbor Laboratory Press on February 6, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://genome.cshlp.org/
http://www.cshlpress.com
http://www.cshlpress.com


We next sought to quantify the absolute error rate of the

smMIP assay and to assess potential sources of error (Supplemental

Fig. S4). In the samples derived from HapMap cell lines, smc-read

base-calls were ;13-fold more accurate than fr-read base-calls, with

a substitution rate of 8.4 3 10�6 per base compared to 1.1 3 10�4

per base for fr-read calls (Table 2). In the hematologic clinical

samples, which were not FFPE, the dif-

ference was ;12-fold (9.5 3 10�6 per base

compared to 1.1 3 10�4 per base), and for

FFPE clinical samples, the difference was

approximately fivefold (2.7 3 10�5 per

base compared to 1.3 3 10�4 per base).

We then explored substitution rates as

a function of the expected nucleotide

incorporated into the MIP during the

gap-fill versus the observed nucleotide in

the fr-read or smc-read base-call (Fig. 3A).

We observed substantial variation with

respect to different pairs of expected/

observed nucleotides, as well as an effect

of dinucleotide context (Supplemental

Fig. S5). In particular, we observed that

two single-nucleotide substitutions, cy-

tosine to adenine and guanine to ade-

nine, exhibited elevated rates compared

to all other substitutions across all sam-

ple types (Fig. 3B).

One potential explanation for these

patterns is the occurrence of pro-mutagenic

chemical processes in individual pro-

genitor molecules, namely, the oxidatively

damaged base 8-oxo-guanine (manifested

as a cytosine to adenine substitution)

(Shibutani et al. 1991) and spontaneous

deamination of cytosine and 5-methyl-

cytosine (manifested as a guanine to

adenine substitution) (Fig. 3B,C). After

smc-read formation, elevated substi-

tution rates potentially attributable to

8-oxo-guanine damage are evident across

all sample types, but are most markedly

elevated in the FFPE clinical samples,

suggesting that FFPE treatment may in-

crease 8-oxo-G formation rates. To further

investigate the possibility of cytosine de-

amination, we asked whether the G-to-A

substitutions were more frequent in the

CpG context, which could be consistent

with deamination of 5-methyl-cytosine

(Fig. 3C). Indeed, the G-to-A substitution

was more frequent in the CpG context

across all sample types compared with all

other G-to-A substitutions, but the CpG

dinucleotide is rare and is not sufficient

to fully explain the elevated G-to-A sub-

stitution rate (Supplemental Table S3).

Finally, we asked whether the correspond-

ing C-to-T mutation rate was also elevated

in the CpG context, which would be

expected if 5-methyl-C deamination were

occurring spontaneously in a replicating

population of cells. We observed modest

elevation of C-to-T in the CpG context (Supplemental Fig. S5D).

Together, these patterns suggest a combined role of in vivo

5-methyl-cytosine deamination as well as ex vivo deamination of

5-methyl-C-to-Tand C-to-U. This is consistent with the properties of

the polymerase used during the gap-fill step, which, as a proofread-

ing polymerase, is expected to stall at Uracil residues (Lasken et al.

Figure 2. smMIP capture performance and detection of low-frequency variation. (A) Distributions of
minimum coverage in a given percentile of total targeted coding positions, rank-ordered by smc-read
coverage, for eight HapMap cell line (red) and 45 clinical cancer (blue and green) samples (box plot
center line: median; top and bottom edges: quartiles; whiskers: farthest data point within 150% of
interquartile range; dots: outliers). Zeroth-percentile indicates maximum coverage. (B) Distributions
of fraction of coding positions above a given smc-read coverage cutoff. (C ) Observed versus
expected variant frequency in smc-read base-calls from mixtures of HapMap genomic DNA samples
at known ratios for positions with at least 1003 coverage (R = 0.94). Ideal performance is shown as
gray line (y = x).
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1996), but also bypasses these lesions at some rate (Greagg et al.

1999).

When we removed the contribution of these potential sources

of false-positive substitution calls, smc-read base-calls were even

more accurate, with substitution rates of 3.5 3 10�6 per base and

5.1 3 10�6 per base for the HapMap and clinical samples, re-

spectively, while the substitution rates of the fr-read calls did not

decrease substantially (Table 2). These patterns are consistent with

gap-fill misincorporations due to DNA damage and actual sub-

clonal heterogeneity constituting the major source of substitutions

in smc-read base-calls, and with polymerase errors after the initial

gap-fill event constituting a major source of substitutions in fr-

reads. Smc-reads are, therefore, at least fivefold and as much as

30-fold more accurate than the most confident base-calls in the

fr-reads, with substitution rates as low as 3.5 3 10�6 per base

when ignoring only two of 12 possible substitutions, or 8.4 3

10�6 per base when considering all possible single nucleotide

substitutions.

We also sought to determine the sensitivity and false dis-

covery rate (FDR) of smMIP for low-frequency variation more

generally. We used the single-nucleotide substitution error rates

calculated as described above to compute P-values for each sub-

clonal variant and adjusted these P-values to account for multiple

testing. We then explored sensitivity and FDR in the synthetically

mixed HapMap samples. This analysis was limited by the small

number of sites that were divergent between the two individuals

in the targeted coding regions (n = 18). However, we found that

smc-reads were generally more sensitive at a given FDR over fr-

reads for variation present at frequencies down to 0.2% (Fig. 4).

For example, at an FDR of 20%, sensitivity ranged from 94% for

variants at 6%–11% frequency to 44% for variants at 0.2%–0.4%

frequency, and variant calls from smc-reads were 3%–22% more

sensitive than the fr-reads at the same FDR cutoff across the var-

ious mixtures.

Detection of somatic variation

Because of the simple experimental workflow, the smMIP assay

could also be useful in clinical and high-volume research settings

as a replacement for single-gene testing for clinically informative

mutations. To assess whether the smMIP method can potentially

replace such tests, we performed a blinded comparison of smMIP

results to the results of clinical single-gene tests. In particular, a

subset of our samples had been previously genotyped for indi-

vidual actionable substitution and indel mutations in BRAF, EGFR,

FLT3, JAK2, KIT, KRAS, NRAS, and PDGFRA. Considering these

sites, we detected 25 of 27 (93%) previously identified mutations

(Table 3; Supplemental Tables S4, S5). We missed two large (67-

and 104-bp) insertions in FLT3, although these could in princi-

ple be detected using a more sensitive analysis strategy and/

or more densely tiled probes in this region. We further detected

two mutations in these sites in two lung cancer samples that

had not been previously genotyped at that site (KRAS p.G12C

in sample 8 and p.G12V in sample 37); these calls were subse-

quently confirmed using a melt curve-based assay (data not

shown).

To explore other somatic mutations, and because we did not

have access to matched normal tissue, we filtered variant sites

identified in the clinical cancer specimens against germline var-

iant sites observed in ;5400 exomes by the Exome Sequencing

Project (http://evs.gs.washington.edu/EVS/). We then required at

least 303 coverage to remove poorly ascertained sites. Across the

45 clinical samples, this filtering process yielded 134 putative

somatic events, of which 74 were found in the Catalogue of

Somatic Mutations in Cancer (Supplemental Fig. S6A; Forbes et al.

2011). As expected, several genes were recurrently mutated in

specific tumor types (Supplemental Fig. S6B), such as 11 of 16 co-

lon cancer samples harboring at least one APC mutation.

To investigate the possibility of tumor subclones in these

specimens, we examined the extent to which putative somatic

mutations were observed at similar frequencies within individual

samples (Supplemental Fig. S7A). While some clustering of alter-

nate allele frequencies is apparent, we observed substantial vari-

ation of alternate allele frequencies within individual samples,

which may reflect the presence of multiple, genetically distinct

subclones. Copy-number gain is another potential source of al-

ternate allele frequencies substantially different from 0.5 or 1. To

explore the possible contribution of copy-number change to al-

lele frequency variation, we also examined alternate allele fre-

quencies for putatively germline variant sites for all clinical

samples and the two pure HapMap cell line samples (Supple-

mental Fig. S7B). Alternate allele frequencies for germline vari-

ants appeared substantially more variable in a subset of clinical

samples compared with the cell line samples, which is consistent

with a contribution of copy-number gain to the observed varia-

tion in allele frequencies. We cannot exclude the possibility that

other factors, including systematic allelic bias, are also contrib-

uting to this phenomenon. However, the general precision ob-

served in the HapMap cell line mixtures decreases the likelihood

of widespread systematic allelic bias.

Table 2. Substitution error rates

fr-reads smc-reads

Fold-reduction in sub. rateCalls Sub. rate Calls Sub. rate

HapMap cell lines All 1.0 3 1010 1.1 3 10�4 4.6 3 109 8.4 3 10�6 12.8
No G>A, C>A 8.8 3 109 1.0 3 10�4 3.9 3 109 3.5 3 10�6 28.8

Clinical (fresh) All 2.3 3 109 1.1 3 10�4 6.6 3 108 9.5 3 10�6 11.5
No G>A, C>A 2.0 3 109 1.0 3 10�4 5.6 3 108 2.9 3 10�6 34.6

Clinical (FFPE) All 2.0 3 1010 1.3 3 10�4 7.1 3 109 2.9 3 10�5 4.5
No G>A, C>A 1.7 3 1010 1.0 3 10�4 6.0 3 109 5.3 3 10�6 19.8

Total number of calls, substitution rates, and the fold-reduction in substitution rate comparing smc-reads to fr-reads for very high-confidence ($Q41)
base-calls from fr-reads (i.e., read-pairs that have been aligned against one another and collapsed into a consensus sequence) and smc-reads (Q60). These
data are also shown excluding the G>A and C>A substitutions that are likely caused at least in part by patterns of DNA damage (deamination of C and
5-methyl-C and oxidative damage to G resulting in 8-oxo-G). Only positions that were genotyped to sufficient depth that the constitutional genotype of
the sample could be confidently determined to be homozygous reference were used to calculate these rates.
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Subclonal somatic variation at clinically informative sites

We next explored the potential for the smMIP assay to detect very

low-frequency substitutions at clinically informative sites (BRAF

p.V600, EGFR p.L858, JAK2 p.V617, KRAS p.G12/p.G13, NRAS

p.Q61, and PDGFRA p.D842) in the clinical samples. These sites

were not chosen because of any particular sequence or error rate

characteristics, but rather to enable confirmation of subclonal

variant calls with established assays and

to facilitate interpreting the possible

biological significance of putative sub-

clonal variation. Restricting to maxi-

mum quality smc-read base-calls but

without any filtering for variant fre-

quency or confidence, we detected 17

candidate subclonal variants at these

sites across the 45 clinical samples.

However, these candidate variants ex-

hibited a highly non-uniform distri-

bution of error probabilities (calculated as

described for the HapMap subclonal vari-

ants) with seven candidate variants having

P < 10�7 and the remaining 10 having

P > 10�2. We therefore focused further

analysis on the seven high-confidence

candidates (Table 4).

These seven subclonal variants con-

sisted of low-frequency JAK2 p.V617F

mutations (n = 4) in two lung cancers,

a melanoma, and a colon cancer; a BRAF

p.V600E mutation in a melanoma; a

KRAS p.G12V mutation in one of the lung

tumors that also harbored a low-frequency

JAK2 p.V617F mutation; and an NRAS

p.Q61R mutation in a colon cancer. To

exclude the possibility of artifactual

low-frequency variant detection due to

sample cross-contamination or index

cross-talk, we subjected independent DNA

aliquots from the four specimens with

low-frequency JAK2 mutations to con-

firmatory clinical testing using an allele-

specific PCR assay; all four mutations

were confirmed. Furthermore, JAK2 mu-

tations have been reported at low fre-

quency in a previous study in non-small

cell lung cancer samples (Lipson et al.

2012). Additionally, index sequence

cross-talk, which would be predicted to

give rise to mixed read groups, is not

a likely explanation for these low-fre-

quency calls; we required very high-

quality smc-read base-calls, and mixed

read groups are not a general phenome-

non in our data (Supplemental Fig. S8).

We note that, prior to our study, the

melanoma sample was genotyped clini-

cally for BRAF p.V600, and this muta-

tion was not detected (as expected given

that assay’s limited sensitivity); addi-

tionally, polyclonality in melanomas with

respect to BRAF p.V600 mutation status

has been previously observed (Lin et al. 2009, 2011; Yancovitz

et al. 2012).

We therefore expect, based on experimental and biological

evidence, that these seven candidate variants are bona fide. How-

ever, based on the FDR analysis performed using the HapMap sam-

ples, the P-value cutoff of 10�7 is expected to yield a nontrivial FDR

of ;40% for variants near 0.1% frequency (Supplemental Fig. S9), so

it remains possible that one or more of these variants is artifactual.

Figure 3. Substitution error rates as a function of expected and observed nucleotide during gap-fill.
(A) Schematic illustrating mononucleotide and dinucleotide substitution dependencies being consid-
ered. All rates are shown for a given expected gap-fill mono- or dinucleotide, which is the comple-
mentary nucleotide(s) to the nucleotide(s) present in the target genomic DNA, considering only $Q41
fr-read base-calls and Q60 smc-read base-calls at putative homozygous positions based on GATK calls.
(B) Distributions of substitution error rates for eight HapMap cell line and 45 clinical cancer samples,
comparing fr-reads and smc-reads, and all substitutions other than C>A or G>A (W>N + N>B, left) to only
C>A (middle), or G>A (right). (C ) Distributions of substitution error rates comparing fr-reads and smc-
reads, and all G>A substitutions occurring in the non-CG dinucleotide context (DG>DA + GN>AN, left)
to G>A substitutions occurring only in the CG dinucleotide context (CG>CA, right).
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Rapid workflow characterization

Finally, we sought to develop a rapid smMIP workflow using the

Illumina MiSeq platform to enable return of results on a clinically

useful timescale (Supplemental Table S6). In addition to using the

more rapid sequencing instrument, we further streamlined the

experimental protocol. To assess the performance of this revised

workflow, we applied it to eight of the clinical samples that we had

already characterized. Five of these samples harbored low-fre-

quency variation at clinically relevant sites as described above; the

other three were selected at random. Briefly, we observed excellent

agreement between genotype calls using the slow workflow (high-

coverage) and rapid workflow (low-coverage) approaches (Sup-

plemental Table S7). A more thorough discussion of these results

can be found in Supplemental Note S4.

Discussion
Here, we combined technologies for single molecule tagging and

molecular inversion probes toward the development of a practical

and highly multiplexed method for ultrasensitive detection and

precise quantitation of subclonal genetic variation. Smc-reads rep-

resent the consensus of reads derived from the same progenitor

molecule in genomic DNA, and the molecular tagging inherent to

the smMIP assay facilitates error correction down to a substi-

tution rate of 8.4 3 10�6 per base. Errors in smc-reads predom-

inantly exhibit patterns consistent with DNA damage, namely,

the oxidative adduct 8-oxo-guanine and deamination of cytosine

or 5-methyl-cytosine, and this pattern is observed in DNA from

cell lines as well as fresh and FFPE clinical specimens, but is es-

pecially elevated in FFPE specimens. Furthermore, the smMIP

assay is highly quantitative for alternate allele frequencies as low

as ;0.2% and enables sensitive and specific detection of variation

present down to at least 1%.

When we applied this method using

probes targeting 33 clinically informative

cancer genes to a diverse panel of geno-

mic DNAs including 45 clinical cancer

specimens (40 of which were FFPE), we

observed strong concordance with ex-

pected mutations based on clinical single-

gene tests, and discovered as many new

mutations at clinically informative sites

as we missed. Overall, we detected 134 pu-

tatively somatic coding mutations across

the 45 clinical samples, and also identified

seven high-confidence low-frequency

variants at clinically informative sites.

Finally, we established and validated a

simple and rapid smMIP workflow that

is capable of going from DNA sample to

analyzed result in less than 72 h.

The smMIP assay has important

advantages over alternative approaches,

including hybrid capture (Lipson et al.

2012; Wagle et al. 2012) and highly

multiplexed PCR (Tewhey et al. 2009;

Harismendy et al. 2011; Forshew et al.

2012). Compared with hybrid capture,

smMIP offers very low per-sample re-

agent costs and a substantially simpler

and more rapid workflow. Furthermore,

the capture reagent is modular, meaning new probes can be

added ‘‘on-the-fly.’’ Alternatively, the reagent could be split into

single gene pools and combined as desired for small batches of

samples to most efficiently leverage the rapid turnaround and

lower throughput of the bench-top sequencing platforms. Fi-

Figure 4. Sensitivity and false discovery rates for subclonal variation in synthetic mixtures. Sensitivity
versus false discovery rate for low-frequency variants (0.1%–40%) in synthetically mixed HapMap
samples for variant calls from fr-reads (red) and smc-reads (blue), for coding positions that were ade-
quately genotyped in both unmixed HapMap samples and for which there was no substantial (binomial
adjusted P < 10�10) subclonality in the predominant HapMap sample. Expected subclonal variant fre-
quencies are listed at the top of each panel. Area beneath the curve is shown as an inset in each panel.
Candidate subclonal variants occurring in coding sequence and at a frequency of at least 0.1% were pri-
oritized using multiple testing-adjusted binomial P-values that were calculated from substitution error rates.

Table 3. Concordance with single mutation tests

Gene Mutation Expected # of events % detected

BRAF p.V600E 4 100
BRAF p.V600K 2 100
EGFR p.L858R 2 100
EGFR 15-bp deletion (exon 19) 1 100
EGFR 18-bp deletion (exon 19) 1 100
FLT3 67-bp insertion 1 0
FLT3 104-bp insertion 1 0
JAK2 p.V617F 3 100
KIT 6-bp insertion (exon 11) 1 100
KIT 15-bp deletion (exon 11) 1 100
KRAS p.G12C 2 100a

KRAS p.G12V 1 100a

KRAS p.G12D 2 100
KRAS p.G13D 2 100
NRAS p.Q61R 1 100
PDGFRA p.D842V 2 100
Total All 27 92.6%

smMIP genotypes from clinical samples were compared with single mu-
tation tests previously performed by the University of Washington De-
partment of Laboratory Medicine Clinical Molecular Genetics Laboratory
or Hematopathology Laboratory. The smMIP assay detected 25 of 27
expected mutations; two large insertions in FLT3 were not observed, al-
though the assay is, in principle, capable of detecting these mutations.
asmMIP also detected two additional KRAS mutations (one p.G12C and
one p.G12V) in two lung-cancer samples that had not been genotyped for
these mutations; these mutations were subsequently confirmed in these
samples by the clinical laboratory.
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nally, molecular tagging facilitates single molecule consensus

base-calling without relying on pseudo-random fragmentation

breakpoints, which may not be informative at high-sequencing

depths. However, a smMIP-based approach will not likely scale as

well to very large targets (i.e., thousands of genes), and may be less

sensitive to large-scale genomic rearrangements. Compared with

highly multiplexed droplet (Tewhey et al. 2009; Harismendy et al.

2011) or microfluidic (Forshew et al. 2012) PCR, smMIP does not

rely on sophisticated instrumentation, and, because of molecular

tagging, is more sensitive and quantitative for low-frequency

variation. However, smMIP may not be as compatible with very

low sample inputs (i.e., less than ;10 ng), because the initial en-

richment step is nonexponential.

There are a number of ways in which the smMIP assay can

likely be improved. Coverage of poorly captured sites and capture

uniformity from probe to probe will be improved by further probe

rebalancing and supplementation of the probe set to more densely

tile problematic regions. Further optimization of the capture

protocol directed toward reducing formation of undesired low-

molecular weight artifacts should improve mapping rates, in-

creasing sensitivity and reducing or eliminating the need for

time- and labor-intensive size-selection steps during sample prep-

aration. Another opportunity is the development of higher reso-

lution models to prioritize variants, potentially using dinucleotide

or even site-specific error rates. Application of the smMIP method

to larger numbers of samples is expected to facilitate the devel-

opment of such models. Finally, improved algorithms and/or probe

content may also facilitate the detection of loss-of-heterozygosity

and copy-number changes.

A single multiplex assay that is capable of accurately and

sensitively identifying subclonal variation in a large panel of genes

has the potential to enable new avenues of research. For example,

in one colon cancer sample, we identified a KRAS p.G13D muta-

tion and a low-frequency NRAS p.Q61R mutation. NRAS mutations

are infrequent (;5% overall; ;3% p.Q61; ;1% p.Q61R) in KRAS

wild-type colon cancers (Vaughn et al. 2011), but have similar

implications, i.e., reduced response to the targeted anti-EGFR

monoclonal antibodies cetuximab and panitumumab (Maughan

et al. 2011), and KRAS mutations have been detected in ;20% of

cancers also harboring NRAS mutations (Maughan et al. 2011).

Furthermore, colon cancers harboring KRAS p.G13D, unlike

those harboring other KRAS mutations, may remain responsive to

cetuximab/panitumumab (De Roock et al. 2010), although this

finding was not replicated in a subsequent study (Maughan et al.

2011). Based on our observation, one possible explanation for the

disagreement between those studies is that some subset of tumors

harboring KRAS p.G13D also harbor NRAS mutations at clonal or

subclonal frequencies, and that NRAS mutation status is also

influencing response to antibody therapy. Further study will be

needed to better establish the prevalence of co-occurring KRAS

p.G13D and clonal or subclonal NRAS mutations and the re-

lationship between mutational status and response to therapy.

Characterization of large panels of archival clinical specimens

using the smMIP assay could be used to address this and other

questions.

Genetic heterogeneity in populations of cells derived from

a clonal origin is a fundamental aspect of biology and has impor-

tant implications in fields ranging from evolution to cancer. How-

ever, DNA sequencing methods have been largely blind to subclonal

variation because of limitations in throughput and/or sequenc-

ing error rate. In the long term, researchers will require genomic

characterization methods that include the reliable detection and

quantitation of low-frequency mutations. For example, genetic

heterogeneity is emerging as a common attribute of human

cancers (Navin et al. 2011; Carter et al. 2012; Gerlinger et al. 2012;

Nickel et al. 2012; Nik-Zainal et al. 2012) and the rapid emergence

of resistance to therapy in some cancers may be explained in

part by the pre-existence of subclonal resistance mutations (Diaz

et al. 2012; Misale et al. 2012). We anticipate that a practical,

sensitive, and accurate method for targeted subclonal variation

detection will enable the design and execution of many more

and much larger studies than have been previously possible. The

speed, simplicity, parallelizability, and very low substitution er-

ror rate (#3 3 10�5) of the smMIP assay also raises the possibility

of processing multiple independent samplings of a given speci-

men over time and space. In cancer, the smMIP assay could be

applied to multiple biopsies from the same tissue mass or mul-

tiple independent metastases (Gerlinger et al. 2012; Nickel et al.

2012), while in the case of somatic mosaicism, many tissue

specimens of diverse embryological origin could be analyzed.

Finally, the smMIP assay could be useful in other scenarios where

the sensitive and precise quantification of low-frequency varia-

tion is relevant, e.g., the detection of extremely low-frequency

cancer-related mutations in circulating cell or cell-free DNA

(Diehl et al. 2008; Forshew et al. 2012), or as a complementary

approach for noninvasively assaying fetal DNA from maternal

plasma (Fan et al. 2012; Kitzman et al. 2012) at clinically relevant

sites.

Table 4. Low-frequency variation at clinically relevant sites in tumor samples

Sample
Cancer

type Gene Chr. Pos.
Ref.

allele
Alt.

allele
Sub. in
gap-fill

Ref.
allele counts

Alt.
allele counts

Alt.
allele fraction

Mutation in
protein

43 Melanoma BRAF 7 140453136 A T A>T, T>A 1266 3 0.0024 p.V600E
19 Melanoma JAK2 9 5073770 G T G>T, C>A 1465 19 0.0128 p.V617F
34 Colon JAK2 9 5073770 G T G>T, C>A 1058 15 0.0140 p.V617F
38 Lung JAK2 9 5073770 G T G>T 1229 4 0.0032 p.V617F
41 Lung JAK2 9 5073770 G T G>T, C>A 795 6 0.0075 p.V617F
41 Lung KRAS 12 25398284 C A G>T 464 3 0.0064 p.G12V
12 Colon NRAS 1 115256529 T C A>G 184 9 0.0466 p.Q61R

Numerical sample ID, cancer type, gene name, chromosome, position (hg19), reference allele, alternate allele, substitution occurring during gap-fill
process (for comparison with standard error rate calculations), number of high-quality smc-read (Q60) reference allele calls, number of high-quality
smc-read (Q60) alternate allele calls, relative fraction of alternate allele calls, and amino acid substitution for substitution variants detected at low
frequencies in tumor samples at clinically relevant sites (BRAF p.V600, EGFR p.L858, JAK2 p.V617, KRAS p.G12/p.G13, NRAS p.Q61, and PDGFRA
p.D842). Variants shown were all associated with binomial P < 10�7, while remaining candidate variants at these sites were all associated with binomial
P > 10�2. For three of the JAK2 observations (samples 19, 34, and 41) and the BRAF observation, the mutation was observed in independent MIPs
targeting both strands.

Hiatt et al.

8 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on February 6, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://genome.cshlp.org/
http://www.cshlpress.com
http://www.cshlpress.com


Methods

Preparation of smMIP capture reagent
MIPs were designed as described elsewhere (O’Roak et al. 2012a)
against the coding exons of 33 cancer-related genes (Supplemental
Table S1) with 50 nt of ‘‘splash’’ on either side of each exon. We
designed probes with targeting arms summing to 40 nt in length,
with extension arms ranging in length from 16 to 20 nt and liga-
tion arms ranging in length from 20 to 24 nt. The gap-fill length
was fixed to 112 nt. Targeting arms were joined by a constant 40-
mer ‘‘backbone’’ sequence (common oligo sequences can be found
in Supplemental Table S9) containing a stretch of 12 random nu-
cleotides, such that each probe could exist in ;412 = 1.67 3 106

unique sequences. After adding probes to accommodate sites of
common variation in the genome that fell in targeting arms, we
had a set of 1312 probes targeting ;88 kb of coding sequence and
;125 kb overall. These 80-mer probes were procured individually
as column-synthesized oligos at 25 nanomole scale in 96-well
plate format without any modifications or purification at a cost of
$7.20 per probe. While a nontrivial up-front cost, this represents
an effectively infinite supply, as each capture reaction consumes
less than one 10-millionth of the supply of a given probe. Ali-
quots of each probe were pooled at equimolar ratios and 85 mL of
this pool was 59-phosphorylated using 50 units of T4 Poly-
nucleotide Kinase (NEB) and 13 T4 DNA ligase buffer in a total
volume of 100 mL for 45 min at 37°C, followed by 20 min at 80°C
to inactivate the kinase. Test captures using cell line genomic
DNA were then carried out as described below, using the equi-
molar probe pool at a 1000-fold probe-to-target molar excess.
Based on sequencing results from these test capture reactions,
probes were ranked with respect to capture efficiency and the
worst-performing ;30% of probes were spiked into the main
probe pool at a 100-fold relative molar excess.

Capture and library construction

Genomic DNA for HapMap cell line samples (NA12892 and
NA19239) was purchased (Coriell). Clinical specimens consisted of
DNA prepared from formalin-fixed paraffin-embedded (FFPE) tis-
sue, peripheral blood, or bone-marrow aspirates from patients with
sporadic colorectal cancer (n = 18), melanoma (7), non-small cell
lung cancer (11), bladder cancer (1), ovarian cancer (1), gastroin-
testinal stromal tumor (4), acute myeloid leukemia (2), and mye-
loproliferative disorders (3). De-identified residual clinical speci-
mens were obtained from the University of Washington molecular
diagnostics laboratory in accordance with the declaration of
Helsinki and ethics guidelines of the local institutional review
board. Specifically, the de-identified samples were determined by
the institutional review board to be nonhuman subjects research.
Hematoxylin and Eosin-stained slides were used as a guide to
manually dissect areas of tumor tissue from unstained slide sec-
tions for FFPE tissue samples. Genomic DNA was prepared with the
Gentra Puregene DNA Isolation Kit (Qiagen). A 3-h to overnight
proteinase K digestion step was included for FFPE samples. Ge-
nomic DNA from the HapMap sample NA12892 was serially
diluted twofold and added to 500 ng of genomic DNA from
HapMap samples NA19239 at six relative ratios ranging from 1:8 to
1:256. Captures of the six cell line mixtures, two pure cell line sam-
ples, and 47 clinical samples were then performed using ;500 ng of
each genomic DNA.

Captures were performed as previously described (Shen et al.
2011) with some modifications. A total of 500 ng of genomic DNA,
330 femtomoles of probe mixture (ignoring the contribution of the
spiked-in poor performers), and 1 mL of 103 Ampligase DNA ligase

buffer (Epicentre) were added to molecular biology-grade water for
a total of 10 mL. For the probe hybridization phase, these mixtures
were incubated in a thermocycler (Bio-Rad) with a heated lid at
98°C for 3 min, 85°C for 30 min, 60°C for 60 min, and 56°C for
120 min. For the gap-fill and ligation phase, we added 300 pico-
moles each dNTPs (NEB), 7.5 micromoles betaine (Sigma), 20
nanomoles NAD+ (NEB), 1 mL of 103 Ampligase buffer, 5 units of
Ampligase DNA ligase (Epicentre), 3.2 units of Phusion DNA
polymerase (NEB), and molecular biology grade water to 10 mL
for a total reaction volume of 20 mL. The gap-fill and ligation
phase was carried out at 56°C for 60 min and 72°C for 20 min.

Following the gap-fill and ligation phase, the reactions were
cooled to 37°C, and to each reaction we added 20 units of Exo-
nuclease I (NEB) and 100 units of Exonuclease III (NEB) to degrade
uncircularized probe and genomic DNA. The digestion was in-
cubated at 37°C for 45 min, heated to 80°C, and incubated for
20 min to inactivate the exonucleases.

After exonuclease treatment and heat-inactivation, the sam-
ples were cooled on ice and, optionally, stored at �20°C. For each
capture reaction, two PCR reactions were prepared, each with
Phusion HF buffer to 13 (Fermentas), forward primer and indexed
reverse PCR primers to 500 nM, SYBR green (Invitrogen) to 0.53,
dNTPs to 200 mm each (NEB), 2 units of Phusion Hot-Start II
polymerase, 10 mL of capture reaction, and nuclease-free water to
50 mL. PCR cycling conditions were an initial denaturation step
for 2 min at 95°C, followed by 26 cycles of: 15 sec at 98°C, 15 sec
at 65°C, and 45 sec at 72°C. A subset of samples was run on a real-
time PCR instrument (Bio-Rad MiniOpticon) to estimate the re-
quired number of cycles; the remaining samples were run without
real-time monitoring (Bio-Rad DNA Engine Tetrad 2).

Library purification and pooling

PCR products were purified individually using Ampure XP beads
(Agencourt) at 1.83 according to the manufacturer’s instructions.
Purified PCR products were then pooled naively (i.e., equal vol-
umes) for initial quality control or based on MiSeq sequence data
considering the number of reads mapping on target per sample. To
remove a low molecular-weight artifact, the PCR product pool was
split across 8 wells of a 10-well pre-cast 6% polyacrylamide TBE gel
(Invitrogen), run at 140 V for 50 min, and stained with 5 mL of
SYBR Gold (Invitrogen). The capture product band at ;280 bp was
excised, crushed, soaked in 800 mL of Tris-EDTA (pH 8.0), and re-
covered from the supernatant using 100 mL of Ampure XP beads
and 700 mL of home-made Ampure buffer (20% PEG 8000, 2.5M
NaCl) according to the manufacturer’s instructions. Pool concen-
tration was assessed using Qubit (Invitrogen).

As an alternative strategy to reduce the time, labor, and cost
required for library construction, purified PCR products were
subjected to an Ampure-based size enrichment and normalization
step. Twenty microliters of each purified PCR product was purified
using 16 mL of a mixture of one part Ampure XP bead solution and
four parts homemade Ampure buffer, and eluted in 20 mL of Buffer
EB (Qiagen). Two microliters of each sample was then run on
a diagnostic precast 6% polyacrylamide TBE gel as described above
to assess relative concentrations of capture product. The gel image
was analyzed for band intensity (ImageJ), and the purified PCR
products were pooled according to relative band intensity and the
pool was quantified via Qubit.

Sequencing and primary analysis

Samples were sequenced using the HiSeq 2000 and MiSeq (Illu-
mina) platforms according to the manufacturer’s instructions us-
ing custom sequencing primers (Supplemental Table S9). On the
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HiSeq platform, we collected two 101-nt reads to determine the
sequence of the gap-fill and the molecular tag and one 8-nt read to
determine the sequence of the sample index. On the MiSeq plat-
form, we collected two 152-nt reads and one 8-nt read. Initial
quality control and capture performance of an equivolume, non-
size selected pool of all 55 samples was assessed using one run of
the MiSeq platform. Purified PCR products were then repooled
according to MiSeq data, size-selected using a PAGE gel as described
above, and subjected to 2.75 lanes of HiSeq 2000 sequencing (two
lanes with no other samples mixed in and one lane with 25% by
moles of an unrelated library). For the establishment of a rapid
workflow, eight samples were processed as described above and
subjected to one run of the MiSeq platform.

Read-pairs were assigned to samples requiring an exact match
to the expected 8-nt sample index sequence (Supplemental Table
S9) and the first 12 nt of the reverse read (corresponding to the
molecular tag sequence) were stripped out and placed in the
header. Read-pairs with molecular tags with homopolymers longer
than 4 nt were discarded. Overlapping regions of read-pairs were
then reconciled to form single ‘‘fr-reads’’ using a custom Smith-
Waterman-based strategy. For positions where the read-pairs did
not overlap, quality scores from the individual reads were retained.
For positions where the read-pairs did overlap, quality scores for
the resulting consensus calls were estimated as below for smc-
reads. Only successfully overlapped fr-reads were retained for
downstream analysis; read-pairs that failed to merge were dis-
carded, although subsequent implementations aimed at greater
sensitivity toward large insertions such as those found in FLT3
will retain and analyze these reads, and smMIP does not ex-
plicitly require collecting overlapping read-pairs. Fr-reads were
aligned to the human reference genome (hg19) using the bwasw
alignment mode of the aligner bwa (Li and Durbin 2010) (v0.5.9)
with non-default parameters ‘‘-r 1’’. Based on expected align-
ment positions according to the probe design, fr-reads were then
assigned to individual probes, allowing 1 nt of tolerance in each
direction for the beginning of the read, which primarily ac-
commodates insertion and deletion mutations during probe
synthesis. Then, for each sample and each probe, fr-reads were
grouped by molecular tag sequence to form tag-defined read
groups (TDRGs).

Single molecule consensus read calling

Alignments to the reference genome were used to call a consensus
sequence (i.e., a single molecule consensus read or ‘‘smc-read’’) for
each TDRG. Positions expected to be derived from probe targeting
arms (and therefore synthetic DNA) were excluded from consid-
eration at this step. We adopted a likelihood ratio framework to
incorporate both the abundance and associated quality-scores of
fr-read base-calls supporting each possible nucleotide at each po-
sition. Briefly, we calculated the log-likelihood Lx of consensus
nucleotide x as the difference of the log-likelihood of a model in
which a given nucleotide x was underlying none of the calls and
the log-likelihood of a model in which x was underlying all of the
calls. This can be represented as in the equation below, where
a given observation is associated with a nucleotide call o and
a ‘‘phred-like’’ quality score Q o.
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 !
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This value (Lx) is computed for each possible consensus call
(A, C, G, T, N, and deletion) at each position in the alignment based
on the set of base-calls and associated quality scores in the TDRG at

that position in the alignment. The consensus call is then de-
termined as the call with the minimum (i.e., most negative) log-
likelihood value, as this indicates the consensus nucleotide where
the model assuming that nucleotide did not underlie any of the fr-
readcalls was the least likely relative to the model assuming that
nucleotide underlay all of the fr-read calls. The final phred-like
quality score is calculated as the integer casting of �10*Lx. For
example, in the event that a model against a given consensus
nucleotide is 10�3 times as likely as a model for a given consensus
nucleotide, the associated quality score was calculated to be 30.
These scores were capped at 60 as we did not observe substitution
rates substantially below 1 3 10�6 in practice. We note that a smc-
read base-call that is derived from a single Q60 fr-read base-call
(which may have been derived from two Q40 calls at an over-
lapping position, for example) will be assigned an estimated
quality score of 59 because of the integer casting step. In practice,
therefore, only smc-read base-calls that were supported by at least
two independent fr-read base-calls can attain quality 60.

For reference positions where at least one read in the align-
ment indicated a deletion and at least one a match, or where at
least one read contained an insertion relative to reference and at
least one read lacked that insertion, we applied the same frame-
work, assigning deletion calls a phred-like quality score of 40. We
note that this framework makes simplifying assumptions: that
a given nucleotide, in the event of a sequencing error, is equally
likely to give rise to any of the other three substitution nucleotides,
and that a single nucleotide truly underlies all calls across all reads
in the TDRG. Furthermore, for interpretability, we used three as the
denominator to distribute the probability when the observed nu-
cleotide was not the candidate consensus nucleotide, though we
computed this value for a total of six possible consensus calls and
not four.

This strategy was also used to determine quality scores for
consensus calls at overlapping positions in fr-reads, which repre-
sents the simpler case of two and only two calls.

Variant calling and classification

To accommodate variants present across a wide range of frequen-
cies, we adopted a two-pronged variant-calling strategy. First, to
detect variants present at higher frequencies (i.e., ;10% or higher)
we used alignments of fr-reads and smc-reads for each sample in-
dividually (i.e., single sample calling) as inputs to the Genome
Analysis Toolkit (GATK, v1.6-5-g557da77) (McKenna et al. 2010)
variant caller ‘‘UnifiedGenotyper’’ with non-default command
line options as follows:

-U ALLOW_UNSET_BAM_SORT_ORDER\
–output_mode EMIT_ALL_SITES\
–downsampling_type NONE\
–genotype_likelihoods_model BOTH\
–read_filter BadCigar\
–min_base_quality_score 20

Variants were then filtered using the GATK tool ‘‘VariantFiltration’’
using the following non-default command line options:

–filterExpression ‘‘QD < 10.0’’\
–filterName ‘‘LowQD’’\
–filterExpression ‘‘DP < 30’’\
–filterName ‘‘LowDP’’

Variants flagged as ‘‘LowDP’’ were ignored in all analyses.
Variants with low ‘‘quality-by-depth’’ according to GATK (i.e.,
QD < 10, ‘‘LowQD’’) were ignored when attempting to discover
germline variation (i.e., for the unmixed HapMap samples) and
retained when attempting to discover somatic variation. Variants
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called by GATK were used to determine concordance between
smMIP genotypes and 1000 Genomes genotypes to exclude sites
from consideration when quantifying substitution rates and for
the detection of somatic variation in clinical samples. Variants
were annotated using the SeattleSeq webserver (http://snp.gs.
washington.edu/SeattleSeqAnnotation134/).

To detect low-frequency variation and quantify substitution
rates, we adopted a distinct strategy. Alignments of fr-reads and
smc-reads were considered directly and base-calls at putative ho-
mozygous reference sites (according to genotypes called by GATK)
were tabulated, considering only very high-quality calls (at least
Q41 for fr-reads, Q60 for smc-reads). We note that some, but not
all positions in fr-reads can attain higher-quality scores via the
merging process (up to a maximum of 60 as specified by the quality
score estimation process described above). To estimate confidence
in and prioritize subclonal variant calls, we used empirically com-
puted error rates for each of the 12 possible single-nucleotide
substitutions and assumed a binomial error process to estimate the
probability of observing a given number of variant calls against
a background of reference calls for each position. We then adjusted
these P-values for multiple testing in R using the function p.adjust()
with method=’’BH’’.

To categorize variation as putative germline or somatic, we
performed several filtering steps. First, we obtained a list of sites
(‘‘ESP5400’’) that had been detected as variant in at least one of
5400 exomes sequenced at the University of Washington as part of
the NHLBI Exome Sequencing Project (http://evs.gs.washington.
edu/EVS/). Because we observed that some sites in this list were also
present in the COSMIC database (CosmicMutantExport_v59_
230512.tsv obtained from ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/
data_export/), we first filtered the ESP5400 list to remove these
positions (e.g., JAK2 p.V617F). Next, variants were categorized as
putative germline if they occurred at a site present in the ESP5400
list that had been filtered of COSMIC variant sites. Remaining
variant sites were then compared with the COSMIC list and cate-
gorized thusly.

Data access
All raw sequencing data collected for this study have been deposited
in the NCBI Sequence Read Archive (SRA) (http://www.ncbi.
nlm.nih.gov/sra) under accession number SRA064171. All cus-
tom analysis scripts are available by request.
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