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Saturation mutagenesis of twenty disease-
associated regulatory elements at single
base-pair resolution
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The majority of common variants associated with common diseases, as well as an unknown

proportion of causal mutations for rare diseases, fall in noncoding regions of the genome.

Although catalogs of noncoding regulatory elements are steadily improving, we have a limited

understanding of the functional effects of mutations within them. Here, we perform satura-

tion mutagenesis in conjunction with massively parallel reporter assays on 20 disease-

associated gene promoters and enhancers, generating functional measurements for over

30,000 single nucleotide substitutions and deletions. We find that the density of putative

transcription factor binding sites varies widely between regulatory elements, as does the

extent to which evolutionary conservation or integrative scores predict functional effects.

These data provide a powerful resource for interpreting the pathogenicity of clinically

observed mutations in these disease-associated regulatory elements, and comprise a rich

dataset for the further development of algorithms that aim to predict the regulatory effects of

noncoding mutations.
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The vast majority of the human genome is noncoding.
Nonetheless, even as the cost of DNA sequencing plum-
meted over the past decade, the primary focus of

sequencing-based studies of human disease has been on the ~1%
that is protein-coding, i.e., the exome. However, it is clear that
disease-contributory variation can and does occur within the
noncoding regions of the genome1,2. For example, there are many
Mendelian diseases for which specific mutations in promoters
and enhancers are unequivocally causal3. Furthermore, for most
Mendelian diseases, not all cases are explained by coding muta-
tions, suggesting that regulatory mutations may explain some
proportion of the remainder. For common diseases, although
coding regions may be the most enriched subset of the genome,
the vast majority of signal maps to the noncoding genome, and in
particular to accessible chromatin in disease-relevant cell types4,5.

Nonetheless, the pinpointing of disease-contributory noncod-
ing variants among the millions of variants present in any single
individual6, or the hundreds of millions of variants observed in
human populations7, remains a daunting challenge. To advance
our understanding of disease as well as the clinical utility of
genetic information, it is clear that we need to develop scalable
multiplex assays of variant effect (MAVEs)8, specifically methods
for accurately assessing the functional consequences of noncoding
variants.

While our mechanistic understanding of regulatory sequences
remains limited9, several groups, including us, have developed
tools that summarize large amounts of functional genomic data
(e.g., evolutionary conservation, gene model information, histone
or TF ChIP-seq peaks, transcription factor binding site (TFBS)
predictions) into scores that can be used to predict noncoding
variant effects (e.g., CADD10, DeepSEA11, Eigen12, FATHMM-
MKL13, FunSeq214, GWAVA15, LINSIGHT16, and ReMM17),
segment annotations (e.g., chromHMM18, Segway19, and fit-
Cons20), or sequence-based models (deltaSVM21). However,
although these scores are widely used, it remains unclear how well
they work.

A major bottleneck in the development of any interpretive
method for noncoding variants is the assessment of prediction
quality, as there are relatively few known pathogenic noncoding
variants, nor consistently ascertained sets of functional mea-
surements of noncoding variants. A recent study by Smedley
et al.17 cataloged a total of 453 known disease-associated non-
coding single nucleotide variants (SNVs) and used those to derive
a score (ReMM). However, many of these variants fall within a
small number of promoters that have been extensively studied.
This leaves in question how generalizable the resulting scores are.
Furthermore, catalogs of disease-associated variants like the one
used by Smedley et al.17, or available from ClinVar22 or
HGMD23, provide only qualitative labels for SNVs (e.g., likely
pathogenic), rather than quantitative information on the mag-
nitude of the effect. In sum, the qualitative nature, possible
ascertainment biases, and relative paucity of “known” functional
noncoding variants severely limit the assessment of available
methods. While massively parallel reporter assays (MPRAs) that
can assess thousands of sequences and their variants for their
activity have been used to test the effect of a large number of
variants, these have been primarily focused on common
variants24,25 or less than a handful of disease-associated reg-
ulatory elements26,27.

To address this gap, we set out to generate variant-specific
activity maps for 20 disease-associated regulatory elements,
including ten promoters (of TERT, LDLR, HBB, HBG, HNF4A,
MSMB, PKLR, F9, FOXE1, and GP1BB) and ten enhancers (of
SORT1, ZRS, BCL11A, IRF4, IRF6, MYC (2×), RET, TCF7L2,
and ZFAND3), together with one ultraconserved enhancer
(UC88)28,29. Specifically, we use MPRAs to perform saturation

mutagenesis26,27 on each of these regulatory elements, spanning
28–73% in GC content and 187–601 base pairs (bp) in length.
Altogether, we empirically measure the functional effects of over
30,000 SNVs or single nucleotide deletions. We observe that the
density of putative TFBS varies widely across the elements tested,
as does the performance of various predictive strategies. These
data comprise a comprehensive resource for the benchmarking
and further development of noncoding variant effect scores, as
well as an empirical database for the interpretation of the disease-
causing potential of nearly any possible SNV in these regulatory
elements.

Results
Selection of disease-associated elements. We selected 21 reg-
ulatory elements, including 20 commonly studied, disease-
relevant promoter and enhancer sequences from the literature
(Supplementary Tables 1 and 2), and one ultraconserved
enhancer (UC88). For the former, we focused primarily on reg-
ulatory sequences in which specific mutations are known to cause
disease, both for their clinical relevance and to provide for
positive control variants. Selected elements were limited to 600 bp
for technical reasons related to the mapping of variants to bar-
codes by subassembly30. In addition, we selected only sequences
where cell line-based reporter assays were previously established.

For example, we selected the low-density lipoprotein receptor
(LDLR) promoter, where mutations have been shown to cause
familial hypercholesterolemia (FH), a disorder that results in
accelerated atherosclerosis and increased risk for coronary heart
disease31–33. We also tested the core promoter region (–200 to
+57) of the telomerase reverse transcriptase (TERT) gene which
is associated with oncogenic mutations34. In particular,
NM_198253.2:c.-124C>T or c.-146C>T are frequently found in
several cancer types, including glioblastoma34–37.

We also selected a sortilin 1 (SORT1) enhancer. A series of
genome-wide association studies showed that the minor allele of a
common noncoding polymorphism at the 1p13 locus
(rs12740374) creates a CCAAT/enhancer binding protein (C/
EBP) TFBS and increases the hepatic expression of the SORT1
gene, reducing LDL-C levels and risk for myocardial infarction in
humans38. We cloned a ~600 bp region that includes rs12740374
as well as most nearby annotated TFBS according to ENCODE
data (wgEncodeRegTfbsClusteredV3 track, UCSC Genome
Browser), to identify additional functional variants in the
enhancer and surrounding region. For this enhancer, we also
conducted MPRA experiments in both forward and reverse
orientations, with the goal of testing for any directionality
dependence of variant effects.

All 21 selected promoter and enhancer regions were individu-
ally validated for functional activity in the appropriate cell lines
(Supplementary Figs. 1 and 2; Supplementary Tables 1 and 2).
This initial validation allowed us to optimize reporter assay
conditions and to confirm that the cloned subsequences of the
candidate regulatory elements resulted in measurable activities in
the appropriate cell types. The validated luciferase expression
levels ranged from 2- to 200-fold over empty vector (Supple-
mentary Tables 1 and 2).

Construction of saturation mutagenesis libraries. In order to
test the functional effects of thousands of mutations in these
selected disease-associated regulatory elements, we first developed
a scalable protocol for saturation mutagenesis-based MPRAs26,27

(Fig. 1). For each of the 21 regulatory elements (Supplementary
Tables 1 and 2), we used error-prone PCR to introduce sequence
variation at a frequency of less than 1 change per 100 bp. While
error-prone PCR is known to be biased in the types of mutations
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that are generated (e.g., a preference for transitions and T/A
transversions)39, high library complexities (50k–2M constructs
per target) allowed us to capture nearly all possible SNVs as well
as many 1-bp deletions with multiple independent constructs per
variant (Supplementary Table 3). To distinguish the individual

amplification products, we incorporated 15 or 20 bp random
sequence tags 3′ of the target region using overhanging primers
during the error-prone PCR.

We then cloned promoters and all, but two, enhancers into the
backbones of slightly modified pGL4.11 (Promega, promoter) or
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pGL4.23 (Promega, enhancer) vectors (see Supplementary
Tables 1 and 2), respectively, from which the reporter gene (as
well as the minimal promoter in the case of enhancers) had been
removed. For each of the 21 regulatory elements, we determined
which variants were linked to which random tag sequences by
deeply sequencing the corresponding library (see the “Methods”
section). In the final step, we inserted the luciferase reporter gene
(as well as the minimal promoter in the case of enhancers) in
between the regulatory element and the tag sequence, and
transformed the MPRA library into E.coli. With this insertion of
the luciferase reporter gene, the above-introduced random tag
sequence becomes part of its 3′ untranslated region (3′ UTR).

We obtained tag assignments (i.e., variant-tag associations) for
a total of 24 saturation mutagenesis libraries (see the “Methods”
section). This included the 21 selected regions listed in
Supplementary Tables 1 and 2, as well as an additional full
replicate for the LDLR and SORT1 enhancer libraries, and an
additional SORT1 library with reversed sequence orientation of
the enhancer. Supplementary Fig. 3 plots the number of tags
associated with substitutions and 1-bp deletions along the target
sequences for each library. The representation of tags associated
with specific variants follows previously characterized biases in
error-prone PCR using Taq polymerase40, with a preference of
transitions (exchange of purine for pyrimidine base) over
transversions (exchange between two-ring purines A/G to one-
ring pyrimidines C/T) and T-A preference among transversions.
Insertions were rare, while short deletions occured at rates similar
to those of the rare transversions. For all libraries, we observed
complete or near-complete coverage of all potential SNVs
(Supplementary Table 3) as well as partial 1-bp deletion coverage.
On average, 99.9% [99.1%, 100%] of all potential SNVs in the
targeted regions are associated with at least one tag, while on
average 55.4% [31.4%, 71.1%] of 1-bp deletions are associated
with at least one tag.

Readout of disease-associated elements. For each MPRA
experiment, around 5 million cells (Supplementary Tables 1 and
2) were plated and incubated for 24 h before transfection with the
libraries. In each experiment, three independent cultures (repli-
cates) were transfected with the same library. In addition, for
LDLR and SORT1, independent MPRA libraries were created, as
outlined above, and cells were transfected from a different culture
and on a different day. In one case (TERT), the same MPRA
library was used for experiments in two different cell types
(HEK293T and a glioblastoma cell line).

We then used our published protocol for quantifying effects
from RNA and DNA tag-sequencing readouts, including the
previously suggested modification of using unique molecular
identifiers (UMIs) during targeted amplification41 (see the
“Methods” section). More specifically, the relative abundance of
reporter gene transcripts driven by each promoter or enhancer
variant was measured by counting associated 3′ UTR tags in
amplicons derived from RNA (obtained by targeted RT-PCR),
and normalized to its relative abundance in plasmid DNA
(obtained by targeted PCR). For all experiments, we excluded tags

not matching the assignment and determined the frequency of a
tag in RNA or DNA from high-throughput sequencing experi-
ments based on the number of unique UMIs. We only considered
tag sequences observed in both RNA and DNA. Supplementary
Table 4 summarizes the number of RNA and DNA counts
obtained in each experiment. From individual tag counts in RNA
and DNA, we fit a multiple linear regression model to infer
individual variant effects (see the “Methods” section).

For data quality reasons, we introduced a minimum threshold
on the number of associated tags per variant used in model fitting
(various quality measures for fitted variant effects versus the
number of tags are plotted in Supplementary Fig. 4). We picked
this threshold based on the correlation of variant effects obtained
when comparing between the independent libraries of LDLR
(Fig. 1b and Supplementary Fig. 5) and SORT1 (Fig. 1c and
Supplementary Fig. 6). Using all SNVs and 1-bp deletions with at
least one associated tag in each transfection replicate, variant
effects show a Pearson correlation of 0.93 (LDLR) and 0.94
(SORT1). When requiring a minimum of ten tag measurements
after combining all three transfection replicates, correlations
increase to 0.97 (LDLR) and 0.96 (SORT1). Requiring even higher
thresholds (Supplementary Table 5) further improves replicate
correlation up to 0.98 for both experiments (min. 50 tags), but
reduces SNV coverage to 86.3% and 1-bp deletion coverage to
15.6% across all datasets (Supplementary Table 6). We therefore
used a minimum of ten tags, reducing average coverage from
99.8% to 98.4% [93.0%, 100.0%] for all putative SNVs and from
44.4% to 25.3% [10.5%, 41.7%] for 1-bp deletions.

To assure high quality of our complete dataset, we evaluated
the Pearson correlation of variant effects divided by their
standard deviation among pairs of transfection replicates
(Supplementary Table 7). We observed the lowest replicate
correlation for BCL11A, FOXE1, and one of the MYC elements
(rs1198622). In contrast, experiments for HBG1, IRF4, LDLR,
SORT1, and TERT exhibited high reproducibility among
transfection replicates (Pearson correlation > 0.9). Exploring
differences in the proportion of alleles with significant regulatory
activity, we observed a wide range of values across elements
(3–52% of variants using a lenient p-value threshold of <0.01 for
the fit; average 22%; Supplementary Table 7). We find that this
proportion is strongly correlated with the performance of
transfection replicates (Pearson correlation of 0.78), but we also
note a circular relation for the significance of results, low
experimental noise, and high reproducibility.

We sought to explore whether factors like target length, wild-
type activity in the luciferase assay (Supplementary Fig. 1,
Supplementary Tables 1 and 2), measures of assignment
complexity (Supplementary Table 3), as well as DNA and RNA
sequencing depth (Supplementary Table 4) contribute to
technical reproducibility. Linear models of up to three features
fit in a leave-one-out setup explain up to 33% of variance
(luciferase wild-type activity, average number of tags per SNVs,
and the proportion of wild-type haplotypes) or 29% of the
variance (luciferase wild-type activity, average number of variants
per haplotype, and average number of DNA counts obtained) in

Fig. 1 Saturation mutagenesis MPRA of disease-associated regulatory elements. a Saturation mutagenesis MPRA. Error-prone PCR is used to generate
sequence variants in a regulatory region of interest. The resulting PCR products with ~1/100 changes compared with the template region are integrated in a
plasmid library containing random tag sequences in the 3′ UTR of a reporter gene. Associations between tags and sequence variants are learned through
high-throughput sequencing. High complexity MPRA libraries (50k–2M) are transfected as plasmids into cell lines of interest. RNA and DNA is collected
and sequence tags are used as a readout. Variant expression correlation (min. ten tags required) between full replicates of b LDLR (LDLR; LDLR.2) and
c SORT1 (SORT1; SORT1.2). d Log2 variant effect of all SNVs (min. required tags ten) ordered by their RefSeq transcript position in NM_000527.4 of the
hypercholesterolemia-associated LDLR promoter. Upper part shows the LDLR experiment, lower the full replicate LDLR.2. Significance level (red/green
lines) is 10−5 in both expression profiles
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reproducibility between transfection replicates. Overall, these
analyses emphasize the baseline activity of a regulatory element as
the largest factor (i.e., highly active elements are associated with
greater technical reproducibility).

General properties of observed regulatory mutations. Alto-
gether, our MPRAs quantified the regulatory effects of 31,243
potential mutations (min. ten tags) at 9834 unique positions
(Supplementary Table 8) and we setup an interactive website
for exploring this dataset (https://mpra.gs.washington.edu/
satMutMPRA/). Of the unique mutations, 4830 (15%) were
identified as causing significant changes relative to the wild-type
promoter or enhancer sequence (p-value of fit <10−5). Of those
causing significant changes, 1789 (37%) increased expression (by
a median of 20%) and 3041 (63%) decreased expression (by a
median of 24%). The majority of significant effects were of small
magnitude. If we require a minimum two-fold change, we identify
a total of 83 activating and 559 repressing mutations. The sig-
nificant shift toward repressing mutations (binomial test,
p-value < 10−42) is consistent with a model where most tran-
scriptional regulators are activators and binding is more easily
lost than gained with single nucleotide changes.

Out of the 31,243 successfully assayed mutations, 2306 are 1-bp
deletions, of which 229 meet the significance threshold (p-value of
fit <10−5). This is a lower proportion than observed for SNVs
(10% vs. 16%), most likely due to the lower rates at which 1-bp
deletions are created by error-prone PCR, resulting in representa-
tion by fewer tags. Supporting this notion, 1-bp deletions tend to
be associated with larger absolute effect sizes than SNVs
(Wilcoxon Rank Sum test with continuity correction, p-value <
0.05, location shift 0.04). Similarly, we observe a large shift toward
repressive effects with 1-bp deletions (significant effects: 33%
activating [27%, 40%], 76 activating and 153 repressing; min.
two-fold change 5% activating [1%, 17%], 2 activating and 37
repressing), but due to the low number of observations, this shift
is not significantly different than that observed for SNVs
(significant effects: 37% activating [36%, 39%], 1719 activating
and 2882 repressing; min. two-fold change 14% activating [11%,
17%], 80 activating and 514 repressing).

We have greater power to detect significant effects for
transitions than transversions, likely consequent to the higher
sampling by error-prone PCR (Supplementary Table 9; binomial
test comparing the proportion of significant transitions (2190/
9824) vs. transversions (2411/19,113); p-value < 10−16). This is
supported by specific transversions (A-T, T-A) that are also
created more frequently by error-prone PCR (Supplementary
Fig. 3) and represent a higher proportion of significant
observations (A-T 374/2372 and T-A 422/2289, combined
binomial test vs. all transversions, p-value < 10−16). Despite our
greater power for assaying transitions, transversions had larger
absolute effect sizes (Wilcoxon Rank Sum test with continuity
correction, p-value < 10−16, location shift 0.14). This observation
supports a model where regulatory elements evolved some level of
robustness to the more frequent transitional changes (as is the
case for coding sequences42), and is consistent with previous
research showing that transversions have a larger impact on TF
motifs and allele-specific TF binding43.

Our increased power to measure the effects of transitions
resulted in an artifactual enrichment for significant effects among
SNVs previously observed in gnomAD r2.17 (binomial test;
overlap of tested SNVs with gnomAD, n= 689/31,243; of those
with significant effects, n= 144/689; p-value < 0.001), where 64%
of SNVs are transitions compared with 34% of mutations created
in our libraries. However, testing separately for transitions and
transversions, there is no enrichment of significant effects among

SNVs previously observed in gnomAD. In fact, we observed a
smaller absolute effect size for previously observed SNVs
(Wilcoxon Rank Sum test with continuity correction; p-value=
0.06, location shift 0.03). This effect is significant if we exclude
singletons (excl. 82/144 significant variants; Wilcoxon Rank Sum
test with continuity correction; p-value < 0.01, location shift 0.07),
consistent with purifying selection acting on standing regulatory
variation.

The most obvious pattern upon visual inspection of the data is
a strong clustering of positions associated with significant
mutations (e.g., Fig. 1d). This clustering was non-random for
all but the F9 and FOXE1 experiments (Wilcoxon Rank Sum tests
with continuity correction vs. 1000 data shuffles; p-value < 0.01;
for 16/21 elements, p-value < 10−5), as determined from compar-
ing run lengths for significant changes including directionality of
the change. While FOXE1 is one of the experiments mentioned
above with low experimental reproducibility, a non-random
clustering of significant regulatory changes was observed in F9
when additionally requiring a minimum effect size of 20%
(Wilcoxon Rank Sum tests with continuity correction vs. 1000
data shuffles; p-value < 10-9). These results are consistent with
expectations for TFBS (specific examples are discussed below).

In the following sections, we describe the results of saturation
mutagenesis of three of the regulatory elements in greater detail:
the LDLR promoter, the TERT promoter, and a SORT1-associated
enhancer. Similar expositions on the remaining 18 elements are
provided as Supplementary Note 1 and Supplementary Tables 10
and 11. Finally, we compare the relative performance of various
computational tools for predicting these empirical measurements
of regulatory effects.

LDLR promoter. FH is an autosomal dominant disorder of low-
density lipoprotein (LDL) metabolism, which results in acceler-
ated atherosclerosis and increased risk of coronary heart dis-
ease44. With a prevalence of about 1 in 500 individuals, FH is the
most common monogenic disorder of lipoprotein metabolism. It
is mainly due to mutations in the LDL receptor (LDLR) gene that
lead to the accumulation of LDL particles in the plasma45. Several
studies have shown that variants in the LDLR promoter can alter
the transcriptional activity of the gene and also cause FH31–33

(full reference list in Supplementary Table 12). While in some
cases, mutations in the promoter were identified in patients, a
functional follow-up, like testing the regulatory effect of the
variants by means of a luciferase assay, was not always con-
ducted46–48. To decipher the functional activity of these pre-
viously identified, as well as essentially all potential SNVs in the
LDLR (NM_000527.4) promoter, we performed saturation
mutagenesis MPRA in HepG2 cells, a commonly used cell line for
LDLR functional studies33. Experiments for this promoter were
performed using two full replicates (i.e., two independently
constructed saturation mutagenesis libraries), referred to below as
LDLR and LDLR.2 (Fig. 1b).

We observed strong concordance between our MPRA-based
measurements and variants with previous luciferase activity
results (Supplementary Table 12). For example, a c.-152C>T
mutation was previously reported to reduce promoter activity (to
40% of normal activity), while a c.-217C>T variant was shown to
increase transcription (to 160% of normal activity)31. We observe
a reduction of 32%/39% (LDLR/LDLR.2) and activation of 273%/
263% (LDLR/LDLR.2) for these variants, respectively. c.-142C>T
reduced promoter activity (to 20% of normal activity) in transient
transfection assays in HepG2 cells32, and we observed 20%/11%
(LDLR/LDLR.2) residual activity. Mutations located in regulatory
elements R2 and R3 (c.-136C>G, c.-140C>G, and c.-140C>T)
resulted in 6–15% residual activity;33 our MPRA results confirm

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11526-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3583 | https://doi.org/10.1038/s41467-019-11526-w |www.nature.com/naturecommunications 5

https://mpra.gs.washington.edu/satMutMPRA/
https://mpra.gs.washington.edu/satMutMPRA/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


these findings in both replicates (10–22% residual activity). We
also observed no significant changes in promoter activity for
c.-36T>G and c.-88G>A, consistent with a previous study of these
variants33.

Overall, we observe that variants located in close proximity and
overlapping the same TFBS tend to show similar deactivating
effects (e.g., SP1 and SREBP1/SREBP2 sites in Supplementary
Table 12 and Fig. 1d). Previously reported variants located in the
5′ UTR of LDLR generally did not affect promoter activity. The
high concordance between full replicates (Pearson correlation of
0.97) as well as the agreement with previous studies give us
confidence in the potential of our MPRA results to be useful for
the clinical interpretation of LDLR promoter mutations. It also
reinforces the value of functional assays covering all possible
variants of a regulatory sequence of interest, as this provides
consistent and comparable readouts together with a distribution
of effect sizes.

TERT promoter. Mutations in the telomerase reverse tran-
scriptase (TERT) promoter (NM_198253.2), in particular
c.-124C>T or c.-146C>T, increase telomerase activity and are
among the most common somatic mutations observed in can-
cer34–37. Previous luciferase assay studies showed that these
mutations increase promoter activity in human embryonic kidney
(HEK) 293 cells, glioblastoma, melanoma, bladder cancer, and
hepatocellular carcinoma (HepG2) cells34,49–51. In glioblastoma
cells, c.-124C>T or c.-146C>T mutations result in a 2–4 log2 fold
increase in promoter activity51.

Here, we tested the TERT promoter MPRA library in two
different cell types, HEK293T and glioblastoma SF7996 cells52,
referred to here as GBM (Fig. 2a), observing a log2 fold increase in
promoter activity of 2.00/2.86-fold for c.-124C>T and 1.42/2.42-
fold for c.-146C>T in HEK293T and GBM cells, respectively. We
also identified additional activating mutations, some of which
were previously identified in cancer studies49,53,54 and are
annotated in COSMIC55. These include c.-45G>T and
c.-54C>A, previously identified as somatic mutations in bladder
cancers53,54, and c.-57A>C, previously associated with both
melanoma49 and bladder cancer54. We observed activating effects
for c.-45G>T and c.-54C>A with a log2 increase of 0.81/1.65-fold
and 0.45/1.03-fold for HEK293T and GBM cells, respectively. For
c.-57A>C, we observed a 0.65/1.14-fold log2 increase in HEK293T
and GBM cells, respectively, similar to previous reporter assays
that obtained increased expression of 0.6-fold (152%) and 0.3-
fold (123%) on a log2-scale over the wild-type construct in Ma-
Mel-86a and HEK293T cells49, respectively.

A common single-nucleotide polymorphism (SNP) in the
TERT promoter, rs2853669 (c.-245A>G), previously studied in
several cell lines and cancer cohorts, has been suggested to alter
promoter-mediated TERT expression by impacting E2F1 or ETS/
TCF binding56,57. However, studies in both breast cancer58 and
glioblastomas59 failed to find any impact on risk or prognosis of
this polymorphism. The epidemiologic findings are in line with
our results, as we did not observe a significant effect of this
variant on promoter activity in either cell type.

We next sought to assess whether there are differences in
mutational effects on the TERT promoter between HEK293T and
GBM cells that could be driven by the trans environment. Overall,
variant effects were highly concordant between the two cell types
(Fig. 2a). However, we did observe significant differences at
several specific positions. In particular, variants between c.-62 and
c.-70, which corresponds to an E2F repressor site, were found to
increase promoter activity in GBM cells, likely due to the
disruption of this motif (Fig. 2a). None of these effects were
observed in HEK293T cells, suggesting that different E2F family

protein abundances could be driving the differences in promoter
activity between these cell types, and potentially between the
corresponding cancer types.

Previous work has shown that the commonly observed cancer-
associated activating somatic mutations, c.-146C>T and
c.-124C>T, lead to the formation of an ETS binding site that is
bound by the multimeric GABP transcription factor in GBM
cells51. To evaluate the relevance of GABP binding on TERT
promoter activity more globally, we retested our TERT MPRA
library in GBM cells with a short interfering RNA (siRNA)
targeting GABPA. We first optimized GABPA knockdown
conditions using qPCR, such that it reduced GABPA expression
by 68% ± 7% and TERT promoter activity by 58% ± 12%,
compared with a scrambled siRNA control (Supplementary
Fig. 7). We then tested our MPRA library in GBM cells using
either the GABPA siRNA or the scrambled control. A total of 63
variants were identified as significantly different (see “Methods”
and Supplementary Table 13), 59 leading to a reduction, and 4 to
an increase in activity. Both c.-146C>T and c.-124C>T, previously
reported to create GABP binding sites, showed significantly
reduced activity in the siGABPA knockdown compared with the
scrambled control (Fig. 2b). Variants with significantly different
activity were 2.8-fold enriched for ETS-related factor motifs
(ETS1, ELK4, ETV1, ETV4-6, and GAPBA) annotated from
JASPAR 201860 as compared with all 908 other variants present
in both experiments (one-sided Fisher’s exact test; p-value <
0.001).

Apart from the two variants (c.-146C>T and c.-124C>T)
known to create GABPA binding sites, we identified nine
additional variants with the potential to create new ETS family
motifs from the siGABPA knockdown (Supplementary Table 13).
To include such instances as part of a global analysis, we
computed score differences of the corresponding position weight
matrices (PWMs) from activating and repressing variants that
overlap either a reference or newly created ETS family motif
(reference or alternative sequence larger than the 80th percentile
of the motifs’ best matches; 12 activating and 26 repressive
variants). Figure 2c shows that activating variants create new
ETS-related factor motifs and repressing variants disrupt them.
The PWM score changes are highly significant between activating
and repressing variants (one-sided Wilcoxon Rank Sum test,
p-value < 10−11). Overall, the average expression reduction for
the motif-disruptive allele in cases where variants disrupt or
create ETS family motifs is 29.5% ± 14%, which is in concordance
with the 58% ± 12% reduced qPCR expression of TERT
(Supplementary Fig. 7).

SORT1-associated enhancer. The Sortilin 1 (SORT1)-associated
enhancer was identified via a common SNP, rs12740374
(GRCh37 chr1:109,817,590G>T), which is associated with myo-
cardial infarction61. The minor allele T creates a potential C/EBP
binding site, leading to ~4-fold greater luciferase activity com-
pared with the major allele G in a reporter assay38. This is
thought to alter the expression of the SORT1 and proline and
serine rich coiled-coil 1 (PSRC1) genes, leading to changes in LDL
and VLDL plasma levels38. The major allele is thus associated
with higher LDL-C levels and increased risk for myocardial
infarction. These results are also consistent with prior human
lipoprotein QTL analyses62,63.

We carried out saturation-based MPRA in HepG2 cells using a
600 bp region encompassing rs12740374 with two full replicates
(i.e., two independently constructed saturation mutagenesis
libraries transfected at different days with three technical
replicates each, SORT1 and SORT1.2, Fig. 1c). Consistent with
the literature, our MPRA results show a significant effect for
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rs12740374, leading to a 2.92/2.74 log2-fold increase in expres-
sion. Furthermore, we observe many other substitutions of large
effect, with a disproportionate number of >2-fold expression
changes in our overall dataset (144/645) occurring in the SORT1
enhancer (Supplementary Table 8). The locations of these

variants are strongly clustered (Fig. 3), indicative of several TFBS
in this region.

The directionality independence of enhancers is inherent to
their definition but is not often tested. To evaluate whether the
orientation of an enhancer could bias the effects of mutations
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within it, we generated a third SORT1 enhancer library where
the orientation of the enhancer was flipped, termed SORT1.flip.
Comparison of all variants showing a difference in activity
compared with the reference sequence (p-value of fit <10−5) in
the SORT1.flip with the other two libraries in the opposite
orientation (SORT1 and SORT1.2), we observe a very strong
correlation (0.97 and 0.96 for SORT1 and SORT1.2, respec-
tively; Pearson’s correlation), on par with the two biological
replicates in the same orientation, SORT1 and SORT1.2 (0.98;
Pearson’s correlation). This result supports the directionality-

independence of enhancers64 as well as of the effects of variants
within them.

However, we did observe a few significant differences between
SORT1/SORT1.2 and SORT1.flip near the 3′ region of the
forward orientation (GRCh37 chr1:109,817,859-109,817,872), i.e.,
adjacent to the minimal promoter on the reporter construct. This
block of variants led to a significant increase in activity in the
forward orientation (SORT1/SORT1.2) but not in the opposite
orientation (SORT1.flip) (Fig. 3). Analysis of this region for TFBS
using JASPAR 201860 found a potential EBF1 motif (MA0154.3),

Fig. 2 Saturation mutagenesis MPRA of the cancer-associated TERT promoter. a Log2 variant effect of all SNVs (min. ten tags required) ordered by their
RefSeq transcript position in NM_198253.2 of TERT. Upper panel shows the TERT experiment in HEK293T cells and the lower in GBM (SF7996) cells,
where the E2F repressor site is marked. A significance threshold of 10−5 was used (red vs. green vertical lines). b Expression profile of TERT-GBM-
siScramble (gray). Ninety five percent confidence intervals of variants from TERT-GBM-siScramble (green) and TERT-GBM-siGABPA (red), that were
significantly different between the two experiments, are overlaid. In addition, predicted ETS-related motifs in the reference sequence (green) or variant
induced ETS-related motifs (blue) are marked. c Position weight matrix (PWM) score change of variants that show a significant difference between
siGABPA and the scramble siRNA experiment. Motif scores are plotted as boxplots with median center line, upper and lower quartiles box limits, and 1.5×
interquartile range whiskers. Variants were only used if they overlapped an ETS-related factor motif (GABPA, ETS1, ELK4, ETV1, and ETV4-6) with a score
(reference or alternative sequence) larger than the 80th percentile of the best possible motif match to the PWM. TERT-GBM-siGABPA variant effects were
divided by the effect measured in the siRNA scramble experiment. Three asterisks mark a significance level of 10−9 by the two-sided Wilcoxon Rank Sum
test (activating n= 34, repressing n= 162)
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Fig. 3 Saturation mutagenesis MPRA of a myocardial infarction-associated SORT1 enhancer. Expression effects of SNVs from experiments SORT1, SORT1.2,
and SORT1.flip. Direction of SORT1 and SORT1.2 was from left to right in the experiments. In the SORT1.flip experiment, the direction was reversed (right to
left in the figure). Highlighted area in red, close to the experimental promoter site in SORT1 and SORT1.2, is different between the SORT1/SORT1.2 and
SORT1.flip experiments. In this region, JASPAR annotates an EBF1 motif (MA0154.3). A significance threshold of 10−5 was used (red vs. green
vertical lines)
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suggesting that this factor might lead to the orientation activity
differences observed in our assays. EBF1 is known to act as an
activator or repressor of gene expression65,66 and mutations to its
core motif sequences (GGG and CCC) had the strongest effect in
our SORT1 assay. Nonetheless, its 3′ location and orientation
dependence suggests that it is likely contributing to minimal
promoter rather than enhancer activity.

Computational tools predict expression effects poorly. Alto-
gether, our MPRAs analyzed over 30,000 different mutations for
their effects on regulatory function. We next set out to assess the
performance of the available computational tools and annotations
for predicting the regulatory effects of individual variants. For this
purpose, we examined various measures of conservation (Phy-
loP67, PhastCons68, and GERP++69) as well as a number of
computational tools that integrate large sets of functional geno-
mics data into combined scores (CADD70, DeepSEA11, Eigen12,
FATHMM-MKL13, FunSeq214, GWAVA15, LINSIGHT16, and
ReMM17). In addition, we previously identified the number of
overlapping TFBS as a significant predictive measure of the
activity of a specific region41. We therefore also analyzed TFBS
annotations resulting from motif predictions overlayed with
biochemical evidence from ChIP-seq experiments (available as
Ensembl Regulatory Build (ERB)71 and ENCODE72 annotations)
as well as pure motif predictions from JASPAR 201860. Using
JASPAR predictions, we extended this analysis to individual
positions and explored different score thresholds or just the
factors predicted most frequently across the region (see “Meth-
ods”). All these annotations and scores are agnostic to the cell
type(s) in which we studied each sequence. Therefore, we also
compared our results to sequence-based models (deltaSVM21) for
10 of 21 MPRAs, i.e., where a model was publicly available for
the corresponding cell type (HEK293T, HeLa S3, HepG2, K562,
and LNCaP). In cases where an annotation is based on
positions rather than alleles, we assumed the same value for all
substitutions at each position. We did not include the 1-bp
deletions in this analysis, as most annotations are not defined for
deletions.

Supplementary Tables 14 and 15 report the Pearson and
Spearman correlation of the obtained expression effect readouts
with conservation metrics, combined annotation scores, and
overlapping TF predictions, respectively. Figure 4 and Supple-
mentary Figs. 8 and 9 visually contrast expression effects as well
as a subset of these annotations (including ENCODE72 and
Ensembl71 motif annotations). By correlating absolute expression
effects with functional scores, we identified species conservation
as a major driver of the currently available combined scores in
these regions. For example, the correlation results of CADD v1.3/
v1.4, Eigen, FATHMM-MKL and LINSIGHT show more than
90% Pearson correlation across elements with the results of
PhastCons scores calculated from the alignment of mammalian
genome sequences. However, conservation seems only informa-
tive for a subset of the studied noncoding regulatory elements
(e.g., LDLR, ZFAND3, and IRF4, but not SORT1, F9, or GP1BB).
We observe that repressive effects can at least be partially aligned
with available motif data (e.g., F9, GP1BB, IRF4, LDLR, and
SORT1). However, experimentally supported motif annotations
are frequently incomplete (for an example see Fig. 4a, around
c.-215 where motifs are predicted in JASPAR but absent from
ENCODE and ERB). In several cases, motif annotation is also
missing completely. For 13 of the 21 elements studied here, no
motif annotation was available from ERB; for 2 of the 21 elements
no motif annotation was available from ENCODE. Furthermore,
the gain-of-binding motifs, e.g., the motifs underlying activating
mutations in TERT, are currently not at all or insufficiently

modeled in available scores, as these motifs are frequently missed
by scans of the reference genome.

Looking at average Spearman correlations across our 21
regions (Fig. 5, Supplementary Table 15), DeepSEA (0.22)
performed best, followed by FunSeq2 (0.14), Eigen (0.14), high-
scoring (top 10th percentile) JASPAR predictions (0.14), and
FATHMM (0.14). However, the average is a poor measure here.
Spearman correlations for absolute expression effects of some
elements were reasonably high for several methods (0.3–0.6),
while for other elements no or negative correlations were detected
for most or all methods. We saw the best performance in
predicting an individual element (LDLR) for FATHMM-MKL
(0.59), followed by GerpN (0.59), Eigen (0.58), and vertebrate
PhastCons (0.58). Besides LDLR, the next best agreement between
annotations and absolute expression effects was observed for F9
(top 10th percentile JASPAR 0.52), IRF4 (Eigen 0.48), ZFAND3
(DeepSEA 0.44), and PKLR (LINSIGHT 0.41). The lowest
agreement was observed for FOXE1 (DeepSEA 0.05) and BCL11A
(DeepSEA 0.03); the two elements observed with the lowest
replicate correlation (Supplementary Table 7). However, high
replicate correlations did also not indicate high correlations with
existing scores or annotations. For example, SORT1 (replicate
correlations of 0.99) and TERT (replicate correlations of >0.96 for
GBM experiment) have highest correlations of 0.33 (top 25th
percentile JASPAR) and 0.37 (DeepSEA), respectively.

Among the ten elements for which sequence-based models
were available from deltaSVM, DeepSEA, the top 10th percentile
JASPAR predictions and FunSeq2 scores still performed best in
predicting absolute effect size. The absolute deltaSVM models
ranked 7th out of 25 measures and were most similar to the
number of overlapping top 25th percentile JASPAR predicted
motifs (0.80 Pearson correlation). However, deltaSVM models
showed improved performance when correlating expression
effects including their directionality (0.53 Spearman correlation
for SORT1, 0.43 Spearman correlation for F9, Supplementary
Table 15). The directionality available from deltaSVM, i.e.,
predicted expression gain and loss, illustrates how sequence-
based models can overcome missing gain-of-motif annotations
from reference sequence-based predictions.

In these comparisons, we focused on the relative ranking of
variant effects and included a large number of close-to-zero effect
estimates affected by experimental noise. This might be
conservative for estimating the predictive power in classification
settings, e.g., separating pathogenic from benign variants. Testing
the separation of no/little effect SNVs from the top 200/500/1000
highest effect promoter (Supplementary Table 16; Supplementary
Figs. 10 and 11) or enhancer (Supplementary Table 17;
Supplementary Figs. 12 and 13) variants, we also find DeepSEA
with the best average performance in both groups (ave. AUROC
0.831 promoter and 0.709 enhancer). We see better performance
on the top 200 vs. top 500 vs. the top 1000 variants for both
enhancers and promoters. While this difference is more
pronounced for promoters, it goes along a shift toward certain
elements contributing the majority of selected variants (see
Supplementary Tables 16 and 17). Considering that certain
elements dominate our classification results (promoters: LDLR,
PKLR, and TERT; enhancers: SORT1, IRF4, and IRF6), we caution
to overinterpret differences between promoters and enhancers
(e.g., better performance of conservation scores for promoters vs.
better performance of motif predictions for enhancers). A much
larger number of elements in each group (exceeding the scope of
this study) and eventually a balanced sampling of elements will be
required for that.

To summarize, we observe that even the best performing
computational tools or annotations are less predictive of regula-
tory variants compared with the classification of coding variants70
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Fig. 4 Current computational tools are poor predictors of expression effects. Expression effects of a LDLR and b TERT (significance threshold 10−5; red vs.
green vertical lines) compared with PhastCons68 conservation scores, combined scores of functional genomics data (CADD v1.470, DeepSEA11, Eigen12,
FATHMM-MKL13, and number of overlapping 10th percentile scoring JASPAR60 motifs), and annotated motifs by ENCODE72 and Ensembl Regulatory
Build (ERB) v9071

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11526-w

10 NATURE COMMUNICATIONS |         (2019) 10:3583 | https://doi.org/10.1038/s41467-019-11526-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


and can explain only a small proportion of the expression effects
observed in our data. The highest variance explained based on
Pearson R2 is 0.41 (mammalian PhastCons for LDLR, Supple-
mentary Table 14), the average across all elements is just 0.03.

Discussion
Although limited in their naturalness, MPRAs enable a rigorous,
quantitative ascertainment of the regulatory consequences of
genetic variants. Previous studies applied MPRAs to study com-
mon genetic variants in various regions, with the goal of fine-
mapping the causal regulatory determinants of GWAS or eQTL
associations24,25. In contrast, here we selected sequences with
known regulatory potential—and moreover, sequences previously
implicated in human disease—and sought to quantify the con-
sequences of all possible SNVs on that potential.

Saturating MPRAs uniquely facilitates several kinds of analysis.
First, we are able to formally evaluate the distribution of effect
sizes in regulatory elements. For example, what proportion of
variants are inert, activating or repressing? How typical or aty-
pical is a regulatory variant that results in a two-fold expression
change? Although the answers to such questions undoubtedly
differs between regulatory elements, the number of elements and
variants that were studied allows us to begin to make general-
izations. Second, saturating MPRAs facilitate the fine-scale
identification of TFBSs, including ones that may correspond to
transcriptional regulators for which ChIP-seq data are not
available or that are not well represented in motif databases.
Importantly, it also allows the discovery of binding sites that are
created by genetic variants, i.e., through activating mutations.
Third, we show that the intersection of saturation mutagenesis
MPRAs and TF perturbation, i.e., our siRNA-based knockdown
of GABPA, enables confirmation that a particular TF binds to a
particular TFBS. Larger-scale implementations of this approach

may facilitate the routine identification of the specific trans-acting
factors that are responsible for the regulatory potential of each cis-
acting regulatory element.

Our study and these data have several limitations that merit
highlighting. First, we are limited with respect to context, both cis
and trans. To address the former, we used longer sequences than
are typical for MPRAs, up to 600 bp, but it remains the case that
these are studied on episomal vectors rather than in their native
locations. To address the latter, we selected cell lines in which
these elements were previously shown to be active, and moreover
relevant to the diseases in which these elements were implicated.
Nonetheless, previous studies have demonstrated that some reg-
ulatory polymorphisms do not always reflect their in vivo effects
in cell culture-based assays73, particularly for developmental
genes that show temporal and tissue-specific expression patterns
(e.g., see results for the IRF6 and ZRS in Supplementary Note 1).
A second limitation relates to the reproducibility of measure-
ments for some of the elements studied, and in particular for
those with lower basal activity (which we found to be the largest
factor impacting reproducibility). Potential approaches to address
this in future work include using a stronger minimal promoter
(for enhancers) or simply using more complex libraries to further
reduce noise (for all elements).

A clear result of our analyses is that although myriad anno-
tations and integrative scores are available, and although some
annotations/scores are surprisingly successful in specific cases, no
current score consistently performs well in predicting the reg-
ulatory consequences of SNVs in the human genome. It is our
hope that this dataset of functional measurements for over 30,000
single-nucleotide substitution and deletion regulatory mutations
in disease-associated regulatory elements will be useful for the
field for studying the shortcomings of current tools, and hopefully
inspiring their improvement.

Name Type CADD FunSeq Eigen FATHMM DeepSEA LINSIGHT ReMM GWAVA deltaSVM JASPAR PhCons PhyloP GerpN

BCL11A enh. –7% 0% –3% 2% 3% –9% –2% –2% – 1% –1% –1% –1%

F9 prom. –3% –2% – 3% 23% –2% 4% –4% 20% 52% –4% 3% –2%

FOXE1 prom. –3% 4% 2% 4% 5% 3% –1% –9% 1% 0% –1% 2% 1%

GP1BA prom. 5% 13% 0% 10% 25% 9% 7% 28% – 33% 4% 5% 1%

HBB prom. 8% 11% 15% 11% 29% 12% 11% –5% – 5% 10% 19% 5%

HBG1 prom. 10% 11% 16% 15% 26% 13% 0% –3% – 1% 21% 12% –3%

HNF4a prom. 20% 10% 22% 18% 25% 22% 14% 9% 3% 10% 20% 15% 22%

IRF4 enh. 41% 40% 48% 29% 47% 44% 30% 24% – 26% 31% 24% 47%

IRF6 enh. 19% 12% 19% 23% 28% 15% 19% –1% – 2% 21% 17% 4%

LDLR.2 prom. 51% 40% 58% 59% 56% 56% 52% 4% 15% 39% 57% 44% 59%

MSMB prom. 3% 23% 10% 14% 20% 15% –9% 27% 11% 17% 6% 0% 31%

MYCs1 enh. –5% 2% –1% 1% 4% –9% –3% –2% 6% 2% 0% 0% –1%

MYCs2 enh. –9% 2% –4% –9% 12% –11% –1% 2% 8% 7% –4% 1% –10%

PKLR_48h prom. 20% 39% 25% 26% 34% 41% 19% 32% 21% 15% 23% 17% 28%

RET enh. 12% 7% 13% 11% 14% 5% 14% 10% – 17% 13% 11% 11%

SORT1.1 enh. –15% 28% –13% 2% 6% –16% –16% 15% 28% 29% –12% –11% –28%

TCF7L2 enh. 1% 12% 9% 4% 6% 5% –6% 5% – 15% 0% 3% 17%

TERT-G prom. 16% 21% 20% 20% 37% 11% 0% –4% 12% 7% 16% 14% 13%

UC88 UC –5% 6% –4% –3% 11% –3% –7% 4% – 1% –2% –2% –10%

ZFAND3 enh. 40% 23% 40% 40% 44% 38% 30% 9% – 4% 41% 27% 37%

ZRSh13 enh. 2% 0% 7% 7% 7% 3% 5% –15% – 5% 1% 6% 7%

Fig. 5 Spearman correlation of computational scores with measured expression effects. The figure reports Spearman correlation coefficients (in percent) of
the absolute expression effect for all SNVs with at least ten tags in each region with various measures agnostic to the cell type, like conservation
(mammalian PhyloP, mammalian PhastCons, and GERP++), overlapping TFBS as predicted in JASPAR 2018 (counting those in the top 10th percentile of
motif scores across all elements, all motifs, and additional percentiles are available in Supplementary Table 15), and computational tools that integrate large
sets of functional genomics data in combined scores (CADD v1.4, DeepSEA, Eigen, FATHMM-MKL, FunSeq2, GWAVA region model, LINSIGHT, and
ReMM). In addition, we compared a subset of experiments (10/21) to absolute deltaSVM scores available for specific cell types (HEK293T, HeLa S3,
HepG2, K562, and LNCaP). In cases where an annotation is based on positions rather than alleles, we assumed the same value for all substitutions at each
position. The column Type assigns each region as either enhancer (enh.), promoter (prom.), or ultraconserved element (UC). MYC (rs11986220) and MYC
(rs6983267) are abbreviated to MYCs1 and MYCs2, respectively. Blue bars denote positive and red bars negative correlation
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In summary, we successfully scaled saturation mutagenesis-
based MPRAs to measure the regulatory consequences of tens-of-
thousands of sequence variants in promoter and enhancer
sequences previously associated with clinically relevant pheno-
types. We believe that our experiments provide a rich dataset for
benchmarking predictive models of variant effects, an unprece-
dented database for the interpretation of potentially disease-
causing regulatory mutations, and the potential for critical insight
for the development of improved computational tools.

Methods
Selection of target sequences and luciferase assays. Promoter and enhancer
sequences of interest (Supplementary Tables 1 and 2) were amplified from human
genomic DNA (Roche 11691112001). The targets were amplified with overhanging
primers (Supplementary Table 18) to add shared sequences for cloning. All pro-
moters were cloned into pGL4.11b vector [modified from pGL4.11 (Promega) by
Dr Richard M. Myers lab] and most of the enhancers were cloned into the pGL4.23
vector (Promega) that contains a minimal promoter followed by the luciferase
reporter gene (Supplementary Tables 1 and 2). All inserts were confirmed by
Sanger sequencing. We measured the relative luciferase activity of the selected
promoters and enhancers for the wild-type as well as the saturation mutagenesis
library, normalized to the empty vector. For this purpose, HepG2 (HB-8065),
HEK293T (CRL-11268), HeLa (CCL-2), HaCaT (CRL-2404), Neuro-2a (CCL-131),
LNCaP (CRL-1740), and SK-MEL-28 (HTB-72) were obtained from American
Type Culture Collection (ATCC), the primary glioblastoma cell line
SF7996 (GBM)52 was obtained from UCSF (Dr Costello’s lab), and Min6 was a gift
by Dr Feroz Papa’s lab at UCSF. A total of 2.0 × 105 cells were cultured in 96-well
plates overnight using standard protocols and were transfected with 100 ng of
plasmid bearing the promoter/enhancer sequence (Supplementary Tables 1 and 2)
(along with 10 ng of the Renilla vector to facilitate normalization for transfection
efficiency) using X-tremeGENE HP DNA transfection reagent (Roche
06366236001) according to the manufacturer’s protocol. K562 (ATCC CCL-243),
HEL92.1.7 (ATCC TIB-180), and NIH/3T3 cells (ATCC CRL-1658) were cultured
in 24-well plates and transfected using X-tremeGENE HP with 500 ng of the
constructed plasmid, along with 50 ng of the Renilla vector. The promoter/
enhancer activity was measured using the Dual-Luciferase reporter assay (Promega
E1910) on a Synergy 2 microplate reader (BioTek Instruments) following a post-
transfection interval that varied by experiment (Supplementary Tables 1 and 2).

Construction of MPRA libraries. The cloned enhancer or promoter sequences
were amplified in two rounds of PCR. After amplifying the cloned sequences once
to append universal adaptors for subsequent steps (Supplementary Table 19), a
second error-prone PCR with Mutazyme II (GeneMorph II Random Mutagenesis
Kit, Agilent 200550) was used to introduce sequence variation. This second round
also added a 15 or 20 bp random tag (i.e., barcode) contained within an over-
hanging primer oligo (Supplementary Table 20) to each construct.

The resulting PCR products were cloned into the respective vector backbone
(Supplementary Tables 1 and 2) without the luciferase reporter via NEBuilder HiFi
DNA Assembly (NEB E2621) and transformed into 10-Beta Electrocompetent cells
(NEB C3020K). As needed, multiple transformations were pooled and midi-
prepped together (Chargeswitch Pro Filter Plasmid Midi Kit, Invitrogen CS31104).
Using the vector backbone without the luciferase gene allowed for association of
each sequence variant with its newly added tag via sequencing (see below). Once
this interim library was determined to have a sufficient complexity and
representation of variants, the luciferase gene was inserted between the enhancer/
promoter and its tag via a sticky end ligation and transformed again to make the
final library for transfection.

Assignment of tags to sequence variants. The associations between tags and
sequence variants created by error-prone PCR were learned by amplifying and deep
sequencing of this region of the plasmid library before the luciferase gene was
added, i.e., while the enhancer/promoters and tags are in close proximity. For short
enhancers/promoters, the libraries were amplified with sequencing adaptor primers
that captured the cloned sequence with its tag and added the P5/P7 Illumina flow
cell sequences (Supplementary Table 21). For long enhancers/promoters, a custom
subassembly sequencing approach30 was used to obtain associated tags and
sequences along the targets. Here, libraries were also first amplified with sequen-
cing adaptors, but then some of the full-length products were subjected to tag-
mentation via a Nextera library prep (Illumina FC-121-1031). The tagmented
products were amplified with a Nextera-specific primer on the P5 end, and a
primer containing only the P7 flow cell sequence on the other end (Supplementary
Table 22). These PCR fragments were size-selected on a 1%-agarose gel into two
size bins. Full-length and fragmented libraries were quantitated with a Kapa
Library Quantification Kit (Roche 07960140001). Products were run on either an
Illumina MiSeq or NextSeq instrument (Supplementary Table 23). Full-length and
large-size fragment bins were loaded with increased DNA concentration, as these
are less efficiently amplified during the cluster generation process. Sequence reads

were aligned using BWA-mem v0.7.10-r78974 with an increased penalty against
local alignments (-L 80) to the Sanger determined references. A minimum coverage
of three reads along the whole target was required to include variant calls from
bcftools v1.275 for each identified tag. Summary statistics for these assignments are
available in Supplementary Table 3.

Expression of libraries and nucleic acid extraction. For each experiment, about
5 million cells were plated in 15-cm plates and incubated for 24 h before trans-
fection. Each of three independent cultures (replicates) were transfected with 15 μg
of the constructed MPRA libraries using X-tremeGENE HP (Roche 06366236001).
After indicated hours (Supplementary Tables 1 and 2), cells were harvested,
genomic DNA and total RNA were extracted using AllPrep DNA/RNA mini kit
(Qiagen 80204). Total RNA was subjected to mRNA selection (Oligotex, Qiagen
72022) and treated with Turbo DNase (Thermo Fisher Scientific AM2238) to
remove contaminating DNA.

RNA interference (TERT promoter). Following the protocol outlined in Bell
et al.51, siRNAs were transfected into GBM cells (SF7996) using DharmaFECT 1
following the manufacturer’s protocol. Briefly, cells were seeded at a density of
30,000 cells/mL in a 96-well plate and 5 million cells in 15-cm plates in parallel.
Twenty-four hours post seeding, cells were transfected with 50 nM of siRNA and
0.3 μL of DharmaFECT 1 reagent (Dharmacon T-2001). At 48 h post transfection
with siRNA, cells were transfected again with the TERT saturation mutagenesis
library for another 24 h before harvesting for genomic DNA and total RNA as
described above. To measure siRNA knockdown efficiency, cDNA was generated
from the 96-well plate, and qPCR performed (Power SYBR Green Cells-to-Ct kit,
Ambion 4402953) to measure mRNA abundance of GABPA and TERT with
primer sequences previously used (Supplementary Table 24). Relative expression
levels (Supplementary Fig. 7) were calculated using the deltaCT method against
housekeeping gene GUSB51.

RNA and DNA library preparation. For each replicate, RNA was reverse tran-
scribed with Superscript II (Invitrogen 18064-014) using a primer downstream of
the tag. The resulting cDNA was first pooled and then split into multiple reactions
to reduce PCR jackpotting effects. Amplification was performed with Kapa Robust
polymerase (Roche KK5024) for three cycles, incorporating UMIs 10 bp in length,
a sample identifier and the Illumina P7 adapter (Supplementary Table 25). PCR
products were cleaned up with AMPure XP beads (Beckman Coulter A63880) to
remove the primers and concentrate the products. These products underwent a
second round of amplification in eight reactions per replicate for 15 cycles, with a
reverse primer containing only P7 (Supplementary Table 25). All reactions were
pooled, run on an agarose gel for size selection, and then sequenced. For the DNA,
each replicate was amplified for three cycles with UMI-incorporating primers, just
as the RNA. First round products were then cleaned up with AMPure XP beads,
and amplified in split reactions, each for 20 cycles. Reactions were pooled, gel-
purified, and sequenced.

Sequencing and primary processing. RNA and DNA for each of the three
replicates were sequenced on an Illumina NextSeq instrument (2 × 15 or 2 × 20 bp
+ 10 bp UMI+ 10 bp sample index; primers available in Supplementary Table 26).
Paired-end reads each sequenced the tags from the forward and reverse direction
and allowed for adapter trimming and consensus calling of tags76. Tag or UMI
reads containing unresolved bases (N) or those not matching the designed length
were excluded. In the downstream analysis, each tag × UMI pair is counted only
once and only tags matching the above obtained assignment were considered
(Supplementary Table 4).

Inferring SNV effects. RNA and DNA counts for each replicate were combined by
tag sequence, excluding tags not observed in both RNA and DNA of the same
experimental replicate. All tags (T) not associated with insertions or multiple bp
deletions were included in a matrix of RNA count, DNA count, and N binary
columns indicating whether a specific sequences variant was associated with the
tag. We then fit a multiple linear regression model of log2(RNAj) ~ log2(DNAj)+
N+ offset (j∈ T) and report the coefficients of N as effects for each variant.
Further, we fit a combined model (Equation 1) across all three experimental
replicates (i 2 f1; 2; 3g), where we combine all RNA measures in one column and
keep the DNA readouts separated by replicate (i.e., filling missing values with 0).

log2 RNAi;j

� �
� log2 DNA1; jð Þji ¼ 1

0jelse

� �
þ log2 DNA2; jð Þji ¼ 2

0jelse

� �

þ log2 DNA3; jð Þji ¼ 3

0jelse

� �
þ N þ offset

ð1Þ

We required a minimum of ten tags per variant, before considering variant effects
in downstream analyses (Supplementary Tables 5 and 6). While statistically inflated
(assumption of independence between tags, correlated counts due to saturation
mutagenesis process and no modeling of epistasis effects), we used the p-value for
the obtained coefficients as a proxy for the support for each individual nonzero
variant effect.
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We used the correlation between transfection replication of fitted variant effects
divided by the inferred standard deviation as a measure of reproducibility
(Supplementary Table 7). We explored major contributors to the reproducibility by
leave-one-out regression models using putative predictors from Supplementary
Tables 1–4 (target length, Luciferase fold-change, number of associated tags,
proportion of wild type in the library, average mutation rate, number of variants
per insert, tags per SNV, tags per 1-bp deletion, assigned DNA and RNA counts,
number of wild-type tags, number of variants across tags, and average number of
variants per tag).

To identify significantly different variants in the siRNA knockdown experiment,
95% confidence intervals were generated from the generalized linear model using
the confint.lm method of the stats package in R. Variants with non-overlapping
confidence intervals between the experiments TERT-GBM-SiGABPA and TERT-
GBM-SiScramble were considered significantly different.

Annotation and downstream analysis. BP positions and SNVs along the targeted
regions were annotated based on GRCh37/hg19 coordinates. CADD v1.0, v1.3, and
v1.4 were downloaded [http://cadd.gs.washington.edu/download], and phastCons,
phyloP, and GERP++ scores were used as provided with the CADD v1.3 anno-
tations. Functional effect scores for FunSeq v2.16 [http://archive.gersteinlab.org/
funseq2.1.2/hg19_NCscore_funseq216.tsv.bgz], LINSIGHT [http://compgen.cshl.
edu/~yihuang/tracks/LINSIGHT.bw], and ReMM v0.3.1 [https://charite.github.io/
software-remm-score.html] were downloaded for the whole genome and regions of
interest extracted. GWAVA scores for the unknown region and TSS models were
calculated for all positions along the targeted regions using available software [ftp://
ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/]. DeepSEA [http://deepsea.
princeton.edu/job/analysis/create/] and fathmm-MKL [http://fathmm.biocompute.
org.uk/fathmmMKL.htm] scores were retrieved using the respective online web
interfaces.

DeltaSVM scores were computed from the precomputed k-mer weights [http://
www.beerlab.org/deltasvm] of the initial deltaSVM publication21. For each variant
the average of all possible k-mer scores of the alternative allele is subtracted from
the average of all possible k-mer scores of the reference allele. Not available k-mers
in the files are treated as zero. Only precomputed k-mer weights of HEK293T,
HeLa S3, HepG2, K562, and LNCaP were available. The model DukeDnase was
used for experiments in HEK293T (HNF4A, MSMB, MYC rs6983267, and TERT).
For cell types with multiple available k-mer models, we selected the best
performing model based on our data. This was DHS_H3Kme1 for HepG2 (SORT1,
F9, and LDLR) and K562 (PKLR), UwDnase for LNCaP (MYC rs11986220) and
HeLa S3 (FOXE1). We applied the HEK293T model to our TERT experimental
results for the matching cell line as well as for GBM cells, based on the high
correlation observed for these experiments. We obtained higher correlations in
GBM cells, probably due to better experimental performance and are using these
values in the comparison with other functional scores described above.

We used predicted TFBS available from JASPAR 2018 [http://expdata.cmmt.
ubc.ca/JASPAR/downloads/UCSC_tracks/2018/hg19/JASPAR2018_hg19_all_chr.
bed.gz]60. Scores reported for each motif match were divided by the length of the
match. These motif scores of all binding site predictions were combined across the
21 genomic regions to identify thresholds for the 90th (38), 75th (32.5), 50th
(27.8182), 25th (24.4167), and 10th (21.4) percentile. To identify factors with the
highest number of motifs in each region, we identified the five most frequent
factors and included additional factors with the same number of motif matches in
the region. For visualization, overlapping matches of the same motif were
combined and matches on both strands considered only once.

TFBS predictions overlapping respective ChIP-peaks in ENCODE experiments
were downloaded from http://compbio.mit.edu/encode-motifs/. TFBSs annotated
in the ERB v90 were downloaded from [ftp://ftp.ensembl.org/pub/release-90/
regulation/homo_sapiens] and coordinate converted to GRCh37 using the UCSC
liftover program.

To test the performance of computational scores in a classification setting,
i.e., distinguishing between large effect SNVs and those with no effect, we
selected the top 200, 500, and 1000 variants with the largest expression effects
across all elements (min. ten tags required; p-value of fit < 10−5) and randomly
sampled the same number of variants with an absolute log2 expression effect
lower than 0.05 (min. tags ten required), preserving the contribution of each
element in both classes. In the top 1000 analysis, the number of positives
exceeded the number of negatives and we downsampled the positives,
respectively. If a region was studied in multiple experiments, we selected the one
with the largest replicate correlation (Supplementary Table 7). We used
annotations and scores as described above. In cases where an annotation is based
on positions rather than alleles, we assumed the same value for all substitutions
at that position. The analysis was repeated for 100 samples of the no-effect SNVs
and the area under the receiver operating characteristic as well as the area under
the precision-recall curve was computed.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Plasmid construct sequences were deposited in NCBI GenBank (accessions pGL4.11b/
MK484103.1 [https://www.ncbi.nlm.nih.gov/nuccore/MK484103.1], pGL4.11c/
MK484104.1 [https://www.ncbi.nlm.nih.gov/nuccore/MK484104.1], pGL4.23c/
MK484105.1 [https://www.ncbi.nlm.nih.gov/nuccore/MK484105.1], pGL4.23d/
MK484106.1 [https://www.ncbi.nlm.nih.gov/nuccore/MK484106.1], pGL3c/MK484107.1
[https://www.ncbi.nlm.nih.gov/nuccore/MK484107.1], and pGL4Zc/MK484108.1
[https://www.ncbi.nlm.nih.gov/nuccore/MK484108.1]). The raw sequencing data,
obtained tag-to-variant assignments, and processed RNA/DNA data have been submitted
to NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE126550 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126550].
The expression effect estimates, a tool for interactive visualization, and further
information is available at https://doi.org/10.17605/OSF.IO/75B2M.
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