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effects, as well as other genetic variants, also 
have a role in determining the amount of amy-
lase produced (Fig. 1b). As such, it is possible 
that any association between AMY1 and obesity 
is in fact due to specific haplotypes rather than 
simply the diploid copy number. There is also 
a potential role for an amylase gene other than 
AMY1, given that both AMY2A and AMY2B 
also show CNV. Indeed, Carpenter et al.12 spec-
ulated a role for AMY2, on the basis of correla-
tion with AMY1 copy number.

With improved sequencing technology, it 
has become possible to generate longer read 
lengths. The Pacific Biosciences RS II Sequencer 
can produce read lengths that average ~15 kb in 
length (with individual reads of up to 60 kb), 
and the power of this technology for resolving 
regions of the genome intractable to analysis 
with shorter reads has already been shown14. 
As read lengths increase further, it will eventu-
ally be possible to sequence across regions such 
as the amylase locus (which can be >600 kb in 
length12), allowing a qualitative determination 
of copy number and removing the uncertainty 
associated with quantitative analyses.
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AMY1 copy number was then determined 
in 3 different cohorts (totaling 3,500 individu-
als) selected for divergent BMI scores. SNPs 
(unlinked to AMY1) previously associated with 
BMI were analyzed as positive controls13, and, 
indeed, these variants showed significant asso-
ciation. Despite having more than sufficient  
power to detect an effect size equivalent to 
that previously reported for AMY1 copy num-
ber, no significant association with BMI was 
observed. The authors considered the most 
likely explanation for this to be the different 
assays used in the two studies.

Amylase variation and BMI
The fact that the most common haplotypes 
defined in both this report and Carpenter et al.12  
contained an odd number of AMY1 cop-
ies explains the finding that the majority of 
individuals possess an even number of AMY1 
copies when the copy numbers on the two chro-
mosomes are combined. That the qPCR-based 
studies did not observe this supports the con-
clusion that the copy number estimates made 
with qPCR were not precise. This does not, 
however, preclude a role for amylase in BMI. 

One feature that commonly used genotyp-
ing methodologies have in common is that they 
provide a single copy number estimate, based 
on the sum of two alleles. Ideally, the copy num-
ber of each allele should be determined sepa-
rately and the resulting values then combined, 
as a diploid copy number can be the product 
of different haplotype combinations (Fig. 1a). 
However, structural variation at the amylase 
locus is not restricted simply to copy number: 
different AMY1 copies are not always part of 
tandem arrays, and some gene copies can be 
inverted. It has been shown that the amount 
of enzyme produced correlates with copy 
number5, but it may be the case that positional 

kilobases in length11. The authors constructed 
models for eight different haplotypes, three 
of which had not been described previously. 
The 4 most common haplotypes in a panel of 
480 European-ancestry individuals consisted 
of single copies of AMY2A and AMY2B and 
odd numbers (1, 3, 5 or 7) of AMY1 in tandem 
arrays. These structures of the locus match 
those described earlier in 2015 (ref. 12). Less 
common haplotypes contained differing copy 
numbers of AMY2A and/or AMY2B, as well 
as even number copies of AMY1 that were not 
always part of tandem arrays.
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Figure 1  Amylase locus variation. (a) The 
same diploid copy number can be derived from 
different allele combinations. (b) Haplotype 
structure analysis can show that there is more 
variation than just copy number: for example, 
two haplotypes with the same copy number of a 
gene can have different structures, potentially 
leading to different levels of gene product.
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Our capacity to sequence human genomes 
has vastly outpaced our ability to interpret 

the resulting catalogs of genetic variants1. 
Thousands of haplotypes have been found to 
contribute to complex disease risk through 
genome-wide association studies (GWAS), 
but we rarely know which variants or genes 
underlie these associations. The path forward 
is being partly illuminated by large-scale 

efforts such as the ENCODE, BLUEPRINT, 
and Roadmap Epigenomics Projects, which 
perform diverse biochemical assays in hun-
dreds of cell types or tissues at a genome-
wide scale. Genetic variants associated with  
complex diseases tend to occur in regions 
that bear the marks of active regulatory  
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by accumulating the weight changes incurred 
by a particular sequence variant, Lee et al.3 
determine a score, deltaSVM, which effectively 
captures how much the variant alters the sur-
rounding sequence’s regulatory potential.

To validate the deltaSVM method, the 
authors use data from quantitative trait loci 
as well as from in vitro assays of enhancer 
variants. For example, as shown in Figure 1, 
deltaSVM outperforms all alternative predic-
tors that we evaluated on the task of predicting 
the results of in vivo saturation mutagenesis 
of an enhancer10. The authors show that per-
formance is highly dependent on matching 
the cell type used for model training with the 
cell type in which the functional readout is 
obtained.

An appealing aspect of the deltaSVM 
approach is that its training only requires 
open chromatin and control regions for the 
cell type of interest, which can be generated 
by a single assay, DNase-seq. No a priori 
knowledge of transcription factor activities or  
binding specificities are required, nor are 
multiple biochemical assays. Furthermore, 
in contrast with evolutionary information, 
the weights used in the deltaSVM method are 
directly interpretable with respect to mecha-
nism, as they plausibly reflect the binding 
specificities of cell type–specific transcription 
factors. In some cases, these may be imme-
diately relatable to our current knowledge of 
transcription factor binding specificities, while 
highly weighted but unassignable k-mers can 
be prioritized for experimental follow-up.

Applications
Whereas causal variants for Mendelian disor-
ders primarily affect coding sequence, most 
of the signal underlying complex trait heri-
tability partitions to regulatory elements, as,  
for example, defined by DNase I hypersensi-
tivity11. As such, we anticipate that deltaSVM 
may be broadly useful for developing both 
fine-mapping and mechanistic knowledge 
of complex trait associations. As it is blind to 
allele frequency, it will also stratify the regu-
latory consequences of rare or de novo vari-
ants. A limitation of this approach is that it 
is dependent on the availability of training 
data corresponding to each cell type of inter-
est. However, chromatin accessibility data sets 
are increasingly straightforward to generate. 
As we progress toward comprehensive atlases 
of regulatory DNA, in vivo and for all cell 
types, deltaSVM may help clarify both the cell  
types and the regulatory grammar, that is, the 
functional elements involved and the ways in 
which they combine to orchestrate a regula-
tory effect, that are most relevant to specific  
complex diseases. Finally, even as the cell  

developed approaches that integrate evolu-
tionary constraint, functional annotations, 
and/or knowledge of the sequence preferences 
of DNA binding proteins to score the relative 
impact of non-coding variants (for example, 
FunSeq5, CADD6, GWAVA7 and fitCons8). 
However, these predictions are far from  
perfect, and it remains unclear how to best 
predict regulatory effects that are only  
present in specific cell types or tissues, rather 
than at the organismal level.

What’s different?
Instead of using evolutionary information or 
the coordinates of functional annotations, Lee 
et al.3 analyzed the sequence composition of 
regulatory regions in the relevant cell or tissue 
type. Specifically, their method contrasts the 
abundance of gapped k-mers in a training data 
set of regions of open chromatin, for example, 
as defined by chromatin immunoprecipitation– 
sequencing (ChIP-seq) or DNase-seq data 
sets, with a set of random regions matched for 
their base composition and repeat content. 
The gapped k-mers are sequence strings of 
length 10, with up to four uninformative posi-
tions and at least six informative bases. They 
learn weights—that is, relative representations 
in the training data—using a support vector 
machine (SVM), which serves as a predictor of 
cell type–specific regulatory elements9. Then, 

elements in cell types related to that disease2, 
but new methods are needed to precisely  
identify which variants causally underlie 
genome-wide associations, as well as the mech-
anisms by which they do so. It also remains 
possible that regulatory variants underlie a 
substantial proportion of Mendelian disor-
ders that are not resolved by exome sequenc-
ing, although this is challenging to explore  
given that there are 100-fold more variants  
in the genome than in the exome. To tackle 
these issues, Michael Beer and colleagues3 
developed a method that predicts the  
functional effects of regulatory mutations 
from only DNA sequence and open chromatin  
information.

Many computational tools have been 
developed for predicting the effects of coding 
variants. These predictors exploit evolution-
ary conservation and the physicochemical  
properties of amino acids, and some also 
score the effects of variants on well-defined 
sequence signals (for example, splice sites). 
However, as we broaden our scope to the 
effects of regulatory variants, evolutionary 
constraint is a poorer guide, because of both 
the rapid evolution of cis-regulatory elements4, 
and the fact that the variants that underlie 
known genome-wide associations are at allele 
frequencies inconsistent with large deleterious  
fitness effects. Nonetheless, we and others have 

Figure 1  Correlation of conservation measures and functional effects with gene expression.  
(a,b) Conservation measures (Gerp13, PhyloP14, PhastCons15) (a) and functional impact scores (CADD6, 
deltaSVM3, fitCons8, FunSeq25, GWAVA7) (b) overlaid with expression fold changes (gray bars) for an 
ALDOB (aldolase B, fructose-bisphosphate) enhancer as determined with a massively parallel in vivo reporter 
assay10. Pearson correlation values for the whole region are provided in parentheses for each method.
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type or tissue specificity of deltaSVM predic-
tions is an advantage in some contexts, we 
anticipate that it may be possible to combine 
the deltaSVM approach with other infor-
mation (for example, conservation, allele  
frequencies and functional annotations) to 
improve organism-level predictors of delete-
riousness or pathogenicity.

The strategy of using sequence-based models 
to predict variant effects in a cell type–specific 
manner is powerful, and it may be applicable to 
other types of regulatory sequence (for exam-
ple, chromatin marks, splicing). However, a 
limitation is that deltaSVM only captures local 
sequence effects. Regional, domain-level and 
large-scale organization probably influences why 
a sequence is functional in one context but not 

in another. On a related note, even as deltaSVM 
and other tools aim to predict cell type–specific 
or organismal consequences of regulatory vari-
ants, they do not tell us which genes are affected 
by these consequences. We speculate that in 
addition to direct measurement of enhancer-
promoter interactions12, improved modeling of 
the larger-scale organization and interdepen-
dencies of regulatory sequences in the human 
genome will improve the utility and quality of 
‘model-first’ approaches such as deltaSVM for 
regulatory variant effect prediction.
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