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Spatiotemporal control of gene expression is orchestrated in part 
by distally located DNA sequences known as enhancers. The 
first enhancers were identified by cloning fragments of DNA 

into a plasmid with a reporter gene and promoter1–4. Transcriptional 
enhancement in such reporter assays continues to be widely used 
for evaluating whether a putative regulatory element is a bona fide 
enhancer. However, conventional, one-at-a-time reporter assays are 
insufficiently scalable to test the >1 million putative enhancers in 
the human genome5–8.

MPRAs modify in vitro reporter assays to facilitate simultaneous 
testing of thousands of putative regulatory elements9–11 per experi-
ment. MPRAs characterize each element through sequencing-based 
quantification of transcribed, element-linked barcodes9–15. MPRAs 
have facilitated the scalable study of putative regulatory elements 
for goals, including functional annotation16–18, variant effect predic-
tion10–15,19 and evolutionary reconstruction20,21.

Over the past decade, diverse designs for enhancer-focused 
MPRAs have emerged. Major differences include whether the 
enhancer is upstream10,11 versus within the 3′ untranslated region 
(UTR) of the reporter16 and whether the construct remains episomal 
versus integrated18. Additionally, most MPRAs test sequences in 
only one orientation, effectively assuming enhancer activity is inde-
pendent of orientation. Finally, while sheared genomic DNA16,22, 
PCR amplicons12 or hybrid captured sequences23,24 have been used 
in MPRAs, most studies synthesize libraries of candidate enhancers 
on microarrays, generally limiting them to <200 base pair (bp).

Unfortunately, we have, as a field to date, largely failed to sys-
tematically evaluate how these design choices impact or bias the 
results of MPRAs; previous work in this vein is briefly discussed in 

Supplementary Note 1. Particularly as efforts to validate a vast num-
ber of putative enhancers5–8 take shape, a clear-eyed understanding 
of the biases and tradeoffs introduced by MPRA experimental design 
choices is needed. We performed a systematic comparison by testing 
the same 2,440 sequences for regulatory activity using nine MPRA 
strategies, including conventional episomal, self-transcribing active 
regulatory region sequencing (STARR-seq) and lentiviral designs. 
We further tested the same sequences in both orientations. Finally, 
we improved multiplex pairwise assembly25 and applied it to test dif-
ferently sized versions of the same enhancers. Our results quantify 
the impact of MPRA experimental design choices and provide fur-
ther insight into the nature of enhancers.

Results
Implementation and testing of nine MPRA strategies. We sought 
to systematically compare nine MPRA strategies (Fig. 1). A first 
strategy is related to the ‘classic’ MPRA, using the pGL4.23c vec-
tor, wherein the enhancer library resides upstream of a minimal 
promoter and the associated barcodes reside in the 3′ UTR of the 
reporter gene (pGL4)10,26. A second pair of strategies is related to 
STARR-seq, wherein the enhancer library resides in the 3′ UTR of 
the reporter gene, either as originally described (human STARR-seq; 
HSS)16 or using the bacterial origin of replication for transcriptional 
initiation (ORI)22. In both cases, we introduce barcodes immedi-
ately adjacent to the enhancers in the 3′ UTR to facilitate consistent 
procedures with other assays. A third set of strategies is related to 
LentiMPRA, wherein lentiviral integration is used to mitigate con-
cerns about potential differences in chromatin between episomes 
versus chromosomes, either with the enhancer library upstream of 
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the minimal promoter and the associated barcodes in the 3′ UTR of 
the reporter (5′/3′ wild-type (WT))18, the enhancer library upstream 
of the minimal promoter and the barcodes in the 5′ UTR of the 
reporter (5′/5′ WT), or both the enhancer library and the barcodes 
in the 3′ UTR of the reporter (3′/3′ WT). The 5′/5′ WT design was 
developed to address distance-dependent template switching before 
lentiviral integration27,28, as it reduces the distance between the 
enhancer and barcode from 801 to 102 bp. The 3′/3′ WT design is 
analogous to STARR-seq, but is integrated into the genome and also 
addresses template switching by positioning the enhancer and bar-
code immediately adjacent to one another. A fourth set of designs 
are identical to the three lentiMPRA designs, except that the vector 
harbors a mutant (MT) integrase, such that the constructs remain 
episomal (5′/3′ MT, 5′/5′ MT, 3′/3′ MT)18.

For a common set of sequences to test, we turned to a previously 
developed library18 consisting of 2,236 candidate enhancer sequences 
based on HepG2 chromatin immunoprecipitation sequencing 
(ChIP-seq) peaks, along with 204 controls (Supplementary Table 1).  
Of these, 281 overlapped promoters (± 1 kb of the transcription 
start sites (TSSs) of protein-coding genes). The controls consist 
of synthetically designed sequences that previously demonstrated 

enhancer MPRA activity (100 positives) or lack thereof (100 nega-
tives)29 in HepG2 cells, along with 2 positive and 2 negative controls 
derived from endogenous sequences that were previously validated 
with luciferase assays18. All sequences were 171 bp and synthesized 
on a microarray together with common flanking sequences. A 15-bp 
degenerate barcode was appended during PCR amplification and 
amplicons were cloned to the HSS vector. The enhancer/barcode 
region of the HSS library was amplified and used for two purposes; 
first, it was sequenced to link barcodes to enhancers; second, the 
amplicons were cloned at high complexity into other vectors to cre-
ate libraries for the remaining eight MPRA designs (Supplementary 
Fig. 1). As such, the relative abundances of enhancers and barcodes, 
as well as the enhancer–barcode associations, were consistent across 
all MPRA libraries. Cloning details and references for each of the 
nine assay designs are provided in the Methods.

Plasmid libraries were transfected into HepG2 cells in triplicate 
(three different days). LentiMPRA libraries were packaged with 
either WT or MT integrase lentivirus and infected into HepG2 
in triplicate (three different days). We extracted DNA and RNA, 
amplified barcodes via PCR and PCR with reverse transcription 
(RT), respectively, and sequenced amplicons to generate barcode 
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Fig. 1 | Nine MPRA strategies and experimental workflow. Nine different MPrA designs are schematically represented on the left and, from top to 
bottom, include: pGL4.23c (pGL4); the original STArr-seq vector (HSS); STArr-seq with no minimal promoter (OrI); and lentiMPrAs with the enhancer 
library upstream of the minimal promoter and the associated barcodes in the 3′ UTr of the reporter gene (5′/3′), the enhancer library upstream of the 
minimal promoter and barcodes in the 5′ UTr of the reporter (5′/5′), or both the enhancer library and the barcodes in the 3′ UTr of the reporter (3′/3′). 
The episomal designs (pGL4, HSS and OrI) were transfected into HepG2 cells, while 5′/5′, 5′/3′ and 3′/3′ were packaged with either WT or MT integrase 
and infected into HepG2 cells. DNA and rNA were extracted from the cells, the enhancer-associated barcodes were amplified and sequenced, and a 
normalized activity score for each element was computed on the basis of the counts.
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counts (Fig. 1). An activity score for each element was calculated 
as the log2 of the normalized count of RNA molecules from all bar-
codes corresponding to the element, divided by the normalized 
number of DNA molecules from all barcodes corresponding to the 
element (Supplementary Table 2). For each of the 27 experiments 
(nine assays with three replicates), only barcodes observed in both 
RNA and DNA were considered. For 26 of 27 experiments (all but 
3′/3′ MT replicate 1), the median number of barcode counts per 
element was >100 (Supplementary Fig. 2).

Comparing results from different MPRA designs. We first sought 
to evaluate the technical reproducibility of each assay. Most assays 
were highly correlated between the three replicates. Specifically, 
intra-assay Pearson correlations for pairwise comparisons of activ-
ity scores of replicates exceeded 0.90 for all assays except for 5′/3′ 
MT (mean r = 0.87) and 3′/3′ MT (mean r = 0.54) assays (Fig. 2a and 
Supplementary Fig. 3a). We also confirmed correlations for 5′/3′ 
WT and 5′/3′ MT between this and our previous study18 (r = 0.92 
for 5′/3′ WT and r = 0.81 for 5′/3′ MT; Supplementary Fig. 3b).

We next sought to compare the results of the various assay 
designs to one another. We calculated the average activity score 
for each element across all technical replicates of a given assay 
(Supplementary Table 2) and then compared the assays to one 
another. Six of the nine assays demonstrated inter-assay Pearson 
and Spearman correlations of >0.7 with all other members of this 
group (Fig. 2b and Supplementary Figs. 4 and 5). These were the 
ORI and pGL4, together with both WT and MT versions of the 5′/5′ 
and 5′/3′ assays. The remaining three assays (3′/3′ MT, 3′/3′ WT 
and HSS) did not show good agreement with the other six assays, 
nor with one another.

As a different approach to compare assays, we subjected activity 
scores from all 27 experiments (nine assays with three replicates) 
to principal component analysis (Fig. 2c). The aforementioned six 
assays with inter-assay correlations of >0.7 clustered closely to one 
another. Notably, principal component 1 (PC1) tended to separate 
the assays wherein the enhancer resides upstream of the minimal 
promoter (5′/5′, 5′/3′, and pGL4) from those wherein it resides 3′ of 
the reporter gene (3′/3′, HSS and ORI). In contrast, principal com-
ponent 2 (PC2) tended to separate lentiviral designs (5′/5′, 5′/3′ and 
3′/3′) from plasmid-based designs (pGL4, HSS and ORI). This sug-
gests systematic differences in the enhancer activity measurements 
that relate to aspects of MPRA design. It also highlights that the 
location of the candidate enhancer on the plasmid backbone plays 
a larger role in differential activity than does the episomal versus 
integrated aspect of the assay.

Next, we examined the dynamic range of activity scores  
(Fig. 2d). Of note, 3′/3′ MT was removed from further analyses due 
to comparatively poor technical reproducibility (mean r = 0.54). 
The classic enhancer reporter vector (pGL4) and the promoterless 
STARR-seq assay (ORI) exhibited the greatest dynamic range, with 
pGL4 showing the largest separation between positive and negative 
controls (two-sided t-statistic = 37.46). Among the lentiviral assays, 
the 5′/5′ WT design exhibited the greatest dynamic range and sepa-
ration of controls (two-sided t-statistic = 30.92).

We generated lasso regression models based on 915 biochemi-
cal, evolutionary, and sequence-derived features (Supplementary 
Tables 3 and 4) using tenfold cross-validation. We were able to pre-
dict enhancer activities for the six aforementioned assays (Pearson 
r ranging from 0.59 for 5′/3′ WT to 0.71 for pGL4) (Supplementary 
Fig. 6a,b). In general, strong enhancers tended to be underpredicted 
by the model, whereas weak enhancers tended to be overpredicted.

Many of the top coefficients fitted by these models corre-
spond to ChIP-seq signal or sequence-based binding site predic-
tions for transcriptional activators, coactivators and repressors 
(Supplementary Fig. 6c,d and Supplementary Table 5). We caution 
that the interpretation of feature selection and coefficient-based 

ranking is inherently limited by substantial multicollinearity among 
features (Supplementary Table 4), which in turn limits the determi-
nation of which features are mechanistically or causally involved. 
Potential reasons for inter-feature correlations are summarized in 
Supplementary Note 2.

We next sought to ask whether we could predict differences in 
enhancer activity between the assays on the basis of the same 915 
features. For models predicting pairwise differences between the 
results of the pGL4, 5′/5′ WT, 3′/3′ WT and ORI assays, we were 
able to achieve correlations of 0.4–0.5 (Fig. 3a and Supplementary 
Fig. 7a). We were particularly interested in whether features cor-
responding to RNA-binding proteins and splicing factors would 
be especially predictive of promoterless STARR-seq (ORI) or 3′/3′ 
WT results, as in these assays the enhancer itself is included in the 
3′ UTR. Indeed, SRSF1/2, BRUNOL4, PTBP1, PPRC1, KHDRBS2, 
SYNCRIP and MBNL1, which are known to modulate mRNA sta-
bility and splicing, predict differences in measured activity in ORI 
or 3′/3′ WT versus 5′/5′ WT or pGL4 (Fig. 3b,c, Supplementary 
Fig. 7b,c and Supplementary Table 5). Of note, SRSF1/2, PTBP1, 
PRPC1, SYNCRIP and MBNL1 are all expressed in liver30 and could 
therefore influence MPRA results in HepG2. Additionally, several 
promoter-binding proteins (TEAD1, TEAD3, NRSF1, JUN and 
YY1), all expressed in the liver, favor pGL4 and 5′/5′ WT, whereas 
CCAAT-enhancer-binding proteins favor HSS and ORI. This may 
correspond to a tradeoff wherein conventional MPRAs are biased 
toward testing for promoter-like activity, whereas STARR-seq 
MPRAs are biased by mRNA stability and splicing factors.

Next, we examined differences between episomal versus inte-
grated assays. We note that FOXP1 is more predictive of integrated 
activity, while ETS-variant transcription factors are more predictive 
of episomal activity, suggesting that these or correlated factors play 
a differential role in episomal versus integrated contexts (Fig. 3b,c 
and Supplementary Fig. 7b,c).

Notably, general transcriptional activity, as measured by cap 
analysis gene expression (CAGE)31, was among the most predic-
tive features of the 3′/3′ WT assay (Supplementary Fig. 6c). As this 
is the only assay where the tested elements are both genomically 
integrated and distally located from the promoter, this observation 
suggests that CAGE-based transcriptional activity may be a good 
predictor of distal enhancer activity32,33.

Enhancer activity is largely, but not completely, independent of 
sequence orientation. We next set out to test a key aspect of the 
canonical definition of enhancers, that they function independently 
of their orientation with respect to the promoter. We directionally 
cloned 2,336 sequences (2,236 candidates described above extended 
out to a 192-bp genomic reference sequence, along with 50 posi-
tive and 50 negative controls from Vockley et al.12), in both orienta-
tions into the pGL4 vector, pooled these libraries, and transfected 
HepG2 cells in quadruplicate (Fig. 4a). The median number of 
barcode counts per element was >100 (Supplementary Fig. 8) and 
the measured activities were reproducible (Pearson r > 0.98; Fig. 4b,  
Supplementary Fig. 9 and Supplementary Table 6). Notably, 
enhancer activities for the same elements cloned in forward versus 
reverse orientation to the pGL4 vector were also highly correlated 
(mean r = 0.88) but less so than same-orientation comparisons 
(r > 0.98; Fig. 4b). This suggests that enhancer activity in reporters 
is largely, but not completely, independent of orientation.

In contrast with enhancers, promoters are established to be 
directional34,35. Overall, 266 of 281 promoter-overlapping elements 
were successfully measured in both orientations. We tested whether 
these behaved differently than 1,953 more distally located elements. 
Indeed, the promoter-overlapping sequences exhibited greater 
differences in activity between the two orientations than distal 
elements, supporting the conclusion that they contain signals to 
promote transcription in an asymmetric fashion (Fig. 4c,d).
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Appending sequence context leads to differences in the results of 
MPRAs. Most MPRAs use array-synthesized libraries that are, for 
technical reasons, limited in length, typically to fewer than 200 bp. 
To evaluate the impact of this length restriction, we designed 
192-bp (‘short’), 354-bp (‘medium’) and 678-bp (‘long’) versions of 
our candidate enhancer library, centered at the same genomic posi-
tion and corresponding to the equivalent 2,236 candidate enhanc-
ers tested above (including more flanking sequence from reference 
genome; Supplementary Table 1). We also included 50 high- and 
low-scoring putative elements from Vockley et al.12 in the short and 

medium libraries (excluded from long libraries because they were 
all shorter than 678 bp).

The 192-bp versions of these candidate enhancers were synthe-
sized directly on a microarray; sequencing showed a 100% yield 
(2,336 of 2,336) and a 3.8-fold interquartile range (IQR) for rela-
tive abundance (Supplementary Fig. 10a). To generate 354-bp ver-
sions, we performed our previously published multiplex pairwise 
assembly25 on overlapping pairs of array-synthesized 192-bp frag-
ments (95% yield (2,241 of 2,336); 4.9-fold IQR; Supplementary 
Fig. 10a). Finally, to generate the 678-bp versions, we developed 
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a ‘two-round’ version of MPA that we call hierarchical multiplex 
pairwise assembly (HMPA) (Supplementary Figs. 10b and 11). 
HMPA of overlapping pairs of array-synthesized 192-bp fragments 
yielded overlapping pairs of 354-bp fragments, which were further 
assembled to generate 678-bp fragments (84% yield (1,887 of 2,236); 
27.9-fold IQR; Supplementary Fig. 11a). We verified a subset of our 
long enhancers with PacBio sequencing (Supplementary Fig. 10c,d; 
chimera rate of 16.5%).

We cloned all three libraries into the pGL4 vector, then  
pooled and transfected them in quadruplicate to HepG2 cells 
(Fig. 5a and Supplementary Table 7). Requiring each element to 
be detected with at least ten unique barcodes, there were 651 can-
didate enhancers tested at all three lengths. Technical replicates 
within any given length class were highly reproducible, albeit 
modestly less so for long elements (mean Pearson r = 0.94; Fig. 5b  
and Supplementary Figs. 12 and 13). However, there was less 
agreement for the same candidate enhancers tested at different 
lengths (short versus medium, mean r = 0.78; medium versus 
long, mean r = 0.67; short versus long, mean r = 0.53; Fig. 5b,c).  
Finally, we observed that the positive control sequences were 

significantly more active than the negative controls when tested 
as either 192-bp or 354-bp fragments (P < 0.01, Wilcoxon 
signed-rank test; Fig. 5d).

We chose ten MPRA-active candidate enhancers to test in 
individual luciferase assays: five that showed differential activ-
ity between their long and medium forms (cyan; Supplementary 
Fig. 14a) and five that did not (green; Supplementary Fig. 14a). 
Of the five that showed differential activity, three were active 
in the luciferase assay (2–4), all concordant with MPRA results 
(Supplementary Fig. 14b–d). Of the five that did not show differ-
ential activity in the MPRA, all were active in the luciferase assay 
in at least one form and four had differential activity, possibly due 
to greater sensitivity of the luciferase assay or subtle differences 
between the constructs (Supplementary Fig. 14b–d). We also 
tested versions of all ten of these MPRA-active candidates in their 
long form but with the middle 354 bp deleted; all of these showed 
insignificant (n = 8) or reduced (n = 2) activity in the luciferase 
assay (Supplementary Fig. 14b). Overall, these results highlight 
the relevance of the lengths and boundaries of elements tested in 
MPRAs in influencing measured activity.
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We trained lasso regression models to predict activities using 
features, which were re-computed for each of the three size classes  
(Fig. 6a, Supplementary Fig. 15 and Supplementary Table 4). The 
lower performance of the model for the long element library is pos-
sibly consequent to its fewer sequences, its lower technical reproduc-
ibility or an increase in the effect of nonlinear interactions between 
features that reduce predictive performance. Known predictors of 
enhancer activity were consistently present in the top coefficients, 
although their relative rankings differed depending on the size 
class being examined (Supplementary Fig. 15c and Supplementary 
Table 5). Next, we sought to explicitly model how differences in pre-
dicted factor binding might explain differences in enhancer activ-
ity, as measured by different pairs of size classes. For example, in 
attempting to explain observed activity differences in long versus 
short elements, we computed a set of features as the differences in 
predicted binding or measured ChIP-seq signal, between the long 
element and corresponding short element (for example, ∆ARID3
A = ARID3Along − ARID3Ashort). Many of the top features originated 
from sequence-based differences in predicted binding in the extra 
genomic context surrounding the core element. Features consis-
tently observed to explain activity differences in longer elements 
include RPC155, the catalytic core and largest component of RNA 
polymerase III; Jun and FOS, components of the AP-1 complex; 

ATF2, EZH2 and HDAC1/2, core histone-modifying enzymes; and 
the transcription factors ARID3A, DRAP1 and SP1/2/3 (Fig. 6b,c, 
Supplementary Fig. 16 and Supplementary Table 5).

discussion
Over the past decade, MPRAs have enabled researchers to function-
ally test large numbers of DNA sequences for regulatory activity 
and in the process address numerous biological questions. While 
different groups utilize various backbones and assay designs, there 
has been no systematic comparison of how these different strategies 
influence results.

Here, we have sought to perform a systematic comparison of 
major MPRA strategies and to concurrently investigate the conse-
quences of key design choices such as the assay, element orientation 
and element length. We generally observe concordance between 
different MPRA designs, albeit to varying degrees. Six of the nine 
assays exhibited both technical reproducibility as well as reason-
able agreement with one another (pGL4, ORI, 5′/5′ WT, 5′/5′ MT, 
5′/3′ WT and 5′/3′ MT). Furthermore, as we previously showed 
for the 5′/3′ WT and 5′/3′ MT assays, enhancer activities as mea-
sured by MPRAs18 are reasonably well predicted by models based 
on primary sequence together with biochemical measurements at 
the corresponding genomic locations. Taken together, our results 
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support a view wherein diverse MPRAs are all measuring enhancer 
activity, but design differences (such as integrated versus episomal; 
5′ versus 3′ location of the enhancer) influence the results to a 
modest degree. For example, features influencing mRNA stabil-
ity and splicing favor assays with the enhancer transcribed in the 
3′ UTR (ORI and 3′/3′ WT), whereas promoter-binding tran-
scription factors favor assays with the enhancer upstream of the  
promoter (pGL4 and 5′/5′ WT).

Overall, our results support a preference for three of the nine 
MPRA designs evaluated here (pGL4, ORI and 5′/5′ WT), which 
all had reasonable inter-assay correlations. The pGL4 assay has 
the advantage of representing the ‘classic’ enhancer reporter assay 
design, had the greatest dynamic range and was the most predict-
able with our lasso regression, but had the disadvantages of being 
episomal rather than integrated and of confounding enhancer activ-
ity with possible effects from promoter-binding proteins. The ORI 
assay (promoterless STARR-seq) has the advantage of eliminating 

the need to associate barcodes, potentially allowing for greater 
library complexities, and has a large dynamic range, but has the dis-
advantages of confounding enhancer activity with possible effects 
on messenger RNA splicing and/or stability, and also of being epi-
somal rather than integrated. The 5′/5′ WT assay has the advan-
tage of being integrated rather than episomal and, among lentiviral 
assays, mitigates the template switching issue by minimizing the 
distance between the enhancer and barcode. However, template 
switching still occurs to some degree, the assay exhibits a lower 
dynamic range than pGL4 or ORI assays and has similar potential 
for bias from promoter-binding proteins as pGL4.

A caveat of our HSS and ORI experiments is that by incorporat-
ing a barcode downstream of the enhancer, we introduced the possi-
bility that barcode counts include short transcripts initiating within 
the candidate enhancer itself. Further exploration of this potential 
confounder, including additional experiments, is summarized in 
Supplementary Note 3.
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Another key finding is our confirmation that the activity of 
enhancers, is largely, but not completely, independent of orienta-
tion, at least as measured for our subset of candidate enhancers 
tested using the pGL4 vector. This is of course part of the original 
definition of enhancers1, but efforts to systematically test the valid-
ity of this assumption across a large number of sequences have been 
limited16,36,37. Previously, a subset of preinitiation-complex-bound 
enhancers were shown to have strong orientation-dependent activ-
ity, highlighting that these trends may be influenced by the choice 
of elements tested38. Candidate enhancer sequences derived from 
the vicinity of TSSs exhibited greater directionality, consistent with 
a subset of these bearing features of oriented promoters.

Finally, we developed improved methods to efficiently assemble 
longer DNA fragments from array-synthesized oligonucleotides and 
applied them to evaluate the extent to which including additional 
sequence context around tested elements impacts MPRA results. We 
successfully assembled 95% of 2,336 × 354-bp targets using MPA, 
compared to just 71% of 2,271 × 192–252-bp targets in our original 
description of the method25. Moreover, our HMPA is a protocol that 

in vitro assembles thousands of sequences, each over 600 bp, as a 
single library. In this manuscript, we synthesized >600 elements, 
each 678 bp, for 1–2% of what it would have cost from commercial 
vendors. Unlike potential alternatives, the method does not require 
specialized equipment, making it more widely accessible39.

The sub-200-bp length of sub-sequences typically tested is a 
choice related to the technical limits of microarray-based synthesis. 
In the genome, there are no such limits and it remains unclear what 
the appropriate ‘enhancer size’ is to test in MPRAs and whether this 
choice matters. To evaluate this, we tested candidate enhancers at 
three different lengths. We observed correlations between the same 
elements tested at all lengths, but these correlations clearly drop off 
as a function of length difference. At the extreme, the activities of 
678-bp versus 192-bp versions of the same candidate enhancers were 
more poorly correlated than nearly all of our inter-assay compari-
sons (Pearson r = 0.53, Spearman ρ = 0.46). Furthermore, these data 
suggest that the longer sequences are adding biologically relevant 
signal, as features corresponding to relevant transcription factors 
explain differences in activity of longer versus shorter sequences. 
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For example, a feature corresponding to RPC155, the catalytic sub-
unit of RNA polymerase III, is the strongest coefficient separating 
the 678-bp constructs from the 192-bp and 354-bp constructs and 
also one of the stronger coefficients separating the 354-bp from 
192-bp constructs. Although it is challenging to offer strict guid-
ance in the absence of in vivo ground truth, we recommend testing 
longer sequences when possible.

In conclusion, we set out to rank the relative contribution of assay 
design, orientation and length on the results of MPRAs. Our results 
suggest a degree of caution in interpreting the results of all MPRAs, 
as they are all subject to influence by aspects of the assay design. We 
found that sequence length had the greatest effect, followed by assay 
design and finally orientation. Although MPRAs of high-complexity 
genome-wide fragment libraries are not length limited16,22, MPRAs of 
designed libraries largely still are. For designed libraries in particu-
lar, further work is necessary to develop or improve methods such 
as HMPA to facilitate the construction of complex, uniform MPRA 
libraries of longer sequences, as well as to further explore the optimal 
parameters of element design (such as length and centering).
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Methods
Design, barcoding and cloning of the enhancer library into the HSS vector. 
We used an existing array library from Inoue et al.18. This library consists of 
2,440 unique 171-bp candidate enhancer sequences, based on ChIP-seq peaks 
in HepG2. Each sequence was flanked with a 15-bp sequence on the 5′ end 
(Original_Array_5adapter) and a 44-bp sequence on the 3′ end (Original_
Array_3adapter) (Supplementary Table 8). More detail on enhancer design can 
be found in that manuscript18. We first amplified the library using the following 
primers: STARR-Seq-AG-f and spacer-AG-r (Supplementary Table 8). These 
amplify the library, excluding the previously designed barcodes, while adding 
homology to the STARR-seq vector (Addgene, 71509)16 on the 5′ end and a spacer 
sequence on the 3′ end that we use for all subsequent libraries. We amplified 10 ng 
of array oligonucleotides with KAPA HiFi 2× Readymix (Kapa Biosystems) with 
a 65 °C annealing temperature and 30 s extension, following the manufacturer’s 
protocol. We followed the reaction in real time using Sybr Green (Thermo Fisher 
Scientific) and stopped the reaction before plateauing, after ten cycles. We then 
purified the PCR product with a 1.8× AMPure XP (Beckman Coulter) cleanup 
and eluted in 50 µl of Qiagen Elution Buffer (EB), following the manufacturer’s 
protocol. We took 1 µl of purified PCR product and amplified in triplicate a second 
reaction using KAPA HiFi 2× Readymix using primers STARR-Seq-AG-f and 
STARR-BC-spacer-r with a 35 s extension time and 65 °C annealing temperature 
for eight cycles (Supplementary Table 8). This round of PCR added a 15-bp 
degenerate barcode on the 3′ end of the spacer as well as homology arms to the 
3′ end of the HSS vector. We then pooled the three reactions together, ran the 
products on a 1.5% agarose gel, and gel extracted the amplicon using the QIAquick 
Gel Extraction kit (Qiagen), following the manufacturer’s protocol, eluting in 
17.5 µl of Qiagen EB. We then cloned a 2:1 molar excess of our gel-extracted insert 
into 100 ng of the HSS vector (linearized with AgeI and SalI) with the NEBuilder 
HiFi DNA Assembly Cloning kit (NEB), following the manufacturer’s protocol. 
We transformed 10-β electrocompetent cells (NEB C3020) with the plasmids in 
duplicate following the manufacturer’s protocol, along with a no-insert negative 
control. We pooled the two transformations during recovery and plated 15 µl to 
estimate complexity. The following day, we estimated complexity as approximately 
750,000 and grew a third of the transformation to represent a library of 250,000 in 
100 ml of LB + ampicillin (Amp), so that each candidate enhancer is expected to 
associate on average with 100 different barcodes. We extracted the plasmid using 
the ZymoPURE II Plasmid Midiprep kit (Zymo Research).

Barcode association library for the nine MPRA assays. We amplified 5 ng of the 
HSS library with the following primers: P5-STARR-AG-ass-f and P7-STARR-ass-r 
(Supplementary Table 8). These primers add a sample-specific barcode and 
Illumina flow cell adaptors. We then spiked the library into a NextSeq Mid 300 
Cycle kit with paired-end 149-bp reads and a 20-bp index read (which captured 
the 15-bp barcode as well as 5 bp of extra sequence to help filter for read quality), 
using the following custom primers: Read1 as STARR-AG-seq-R1, Read2 as 
spacer-seq-R2, Index1 as pLS-mP-ass-seq-ind1, and Index2 as STARR-AG-ind2 
(Supplementary Table 8).

Library cloning. From HSS to ORI vector. We amplified 5 ng of the HSS 
library with the following primers: STARR-Seq-AG-f and STARR-Seq-AG-r 
(Supplementary Table 8) using KAPA HiFi 2× Readymix (Kapa Biosystems) 
with a 65 °C annealing temperature and 30 s extension. These primers amplify 
both candidate enhancers and previously assigned degenerate barcodes, and add 
homology arms to the ORI vector (Addgene, 99296)22. We followed the reaction 
in real time with Sybr Green (Thermo Fisher Scientific) and stopped the reaction 
before plateauing at 13 cycles. We gel extracted the amplicon on a 1.5% agarose  
gel as described above. We then cloned the library in a 2:1 molar excess into  
100 ng of the hSTARR-seq_ORI vector (Addgene, 99296), linearized with AgeI  
and SalI, using the NEBuilder HiFi DNA Assembly Cloning kit (NEB), following 
the manufacturer’s protocol. We then transformed 10-β electrocompetent cells 
(NEB C3020) with the plasmids in duplicate following the manufacturer’s 
protocol, along with a no-insert negative control. We pooled the two positive 
transformations during recovery, plated 15 µl to estimate complexity and grew the 
remainder of the culture in 100 ml LB + Amp. The following day, we estimated 
the complexity as >500,000 and extracted the plasmid using the ZymoPURE II 
Plasmid Midiprep kit (Zymo Research).

From HSS to pGL4.23c MPRA vector. As described above, we amplified 5 ng of 
the HSS library with the following primers: pGL423c-AG-1f and pGL423c-AG-1r 
(Supplementary Table 8). These primers amplify both candidate enhancers and 
previously assigned degenerate barcodes, and add homology arms to the pGL4.23c 
MPRA vector (GenBank MK484105). We stopped the reaction before plateauing 
at 18 cycles. We linearized the pGL4.23c MPRA backbone, while removing 
the minimal promoter and reporter using HindIII and XbaI. We treated the 
linearized plasmid with Antarctic Phosphatase (NEB) following the manufacturer’s 
protocol, and then gel extracted the plasmid on a 1% agarose gel, as described 
above. We then cloned our insert into the linearized backbone, transformed, and 
extracted DNA as described above. We then re-linearized the pGL4.23c backbone, 
containing our enhancer library with SbfI and EcoRI, gel extracted, and inserted 

our minimal promoter + green fluorescent protein (GFP) cassette, which contains 
overlaps for SbfI and EcoRI.

From HSS to lentiMPRA 5′/5′. We used similar methods as in the pGL4.23c 
library cloning with the following changes. The HSS library was amplified with 
pLS-mP-AG-2f and pLS-mP-AG-5r (Supplementary Table 8) for 17 cycles. 
After gel extraction, we cloned the insert into the pLS-mP (Addgene, 81225)18, 
which had been linearized with SbfI and AgeI and treated with Antarctic 
Phosphatase. The resulting library was recut with SbfI and AgeI, residing between 
the designed candidate enhancer and barcode, and the minimal promoter was 
ligated in. We generated the minimal promoter with oligos minP_F and minP_R 
(Supplementary Table 8), which provide overlaps for SbfI and AgeI. The minimal 
promoter oligos were phosphorylated and annealed using T4 ligation buffer 
and T4 polynucleotide kinase (NEB) at 37 °C for 30 min, followed by 95 °C 
for 5 min, ramping down to 25 °C at 5 °C min−1. We then diluted the annealed 
oligonucleotides at 1:200 and cloned into the linearized pLS-mP backbone with 
our enhancer library at a 2:1 molar excess.

From HSS to lentiMPRA 5′/3′. We used similar methods as for the pGL4.23c library 
with the following changes. The HSS library was amplified with pLS-mP-AG-2f 
and pLS-mP-AG-3r (Supplementary Table 8) for 17 cycles. After gel extraction, we 
cloned the insert into the pLS-mP backbone (Addgene, 81225)18, which had been 
linearized with SbfI and EcoRI and treated with Antarctic Phosphatase. Similarly 
to the pGL4.23c library, the resulting library was recut with SbfI and EcoRI again, 
and our minimal promoter + GFP cassette inserted, containing overlaps for SbfI 
and EcoRI.

From HSS to lentiMPRA 3′/3′. We used similar methods as for the pGL4.23c library 
with the following changes. The HSS library was amplified with pLS-mP-AG-3f 
and pLS-mP-AG-3R (Supplementary Table 8) for 13 cycles. After gel extraction, we 
cloned the insert into the pLS-mP backbone (Addgene, 81225)18, which had been 
linearized with EcoRI only and treated with Antarctic Phosphatase.

Cell culture, lentivirus packaging and titration. HEK293T and HepG2 cell 
culture, lentivirus packaging and titration were performed as previously described 
with modifications18. Briefly, 12 million HEK293T cells were seeded in 15-cm 
dishes and cultured for 48 h. To generate WT lentiviral libraries (5′/5′ WT, 5′/3′ 
WT and 3′/3′ WT), the cells were co-transfected with 5.5 μg of lentiMPRA 
libraries, 1.85 μg of pMD2.G (Addgene, 12259) and 3.65 μg of psPAX2 (Addgene, 
12260), which encodes a WT pol, using EndoFectin Lenti transfection reagent 
(GeneCopoeia) according to the manufacturer’s instruction. To generate 
nonintegrating lentiviral libraries (5′/5′ MT, 5′/3′ MT and 3′/3′ MT), pLV-HELP 
(InvivoGen) that encodes a mutant pol was used instead of psPAX2. After 18 h, 
cell culture medium was refreshed and TiterBoost reagent (GeneCopoeia) 
was added. The transfected cells were cultured for 2 d and lentivirus collected 
and concentrated using the Lenti-X concentrator (Takara) according to the 
manufacturer’s protocol. To measure DNA titer for the lentiviral libraries, HepG2 
cells were plated at 1 × 105 cells per well in 24-well plates and incubated for 
24 h. Serial volume (0, 4, 8 and 16 μl) of the lentivirus was added with 8 μg ml−1 
polybrene to increase infection efficiency. The infected cells were cultured for 3 d 
and then washed with PBS three times. Genomic DNA was extracted using the 
Wizard SV genomic DNA purification kit (Promega). Multiplicity of infection was 
measured as relative amount of viral DNA (WPRE region, WPRE_F and WPRE_F) 
over that of genomic DNA (intronic region of LIPC gene, LIPC_F and LIPC_R; 
Supplementary Table 8) by qPCR using SsoFast EvaGreen Supermix (Bio-Rad), 
according to the manufacturer’s protocol.

Transient transfections and lentiviral infections. HepG2 cells were seeded in 
10-cm dishes (2.4 million cells per dish) and incubated for 24 h. For plasmid-based 
MPRA, cells were transfected with 10 μg of the plasmid libraries (HSS, ORI and 
pGL4) using X-tremeGENE HP (Roche) according to the manufacturer’s protocol. 
The X-tremeGENE:DNA ratio was 2:1. For the lentiMPRA, the cells were infected 
with the lentiviral libraries (5′/5′ WT/MT, 5′/3′ WT/MT and 3′/3′ WT/MT) along 
with 8 μg ml−1 polybrene, with the estimated multiplicity of infection of 50 for WT 
and 100 for MT libraries. The cells were incubated for 3 d, washed with PBS three 
times and genomic DNA and total RNA was extracted using AllPrep DNA/RNA 
Mini kit (Qiagen). Messenger RNA was purified from total RNA using Oligotex 
mRNA Mini kit (Qiagen). All experiments for nine libraries were carried out 
simultaneously to minimize batch effect. Three independent replicate cultures were 
transfected or infected on different days.

RT–PCR, amplification and sequencing of RNA and DNA. DNA for all 
experiments was quantified using the Qubit dsDNA Broad Range Assay kit 
(Thermo Fisher Scientific). For all samples, a total of 12 µg of DNA was split into 
24 × 50 µl PCR reactions (each with 500 ng of input DNA) with KAPA2G Robust 
HostStart ReadyMix (Kapa Biosystems) for three cycles with a 65 °C annealing 
and 40 s extension, using an indexed P5 primer and a unique molecular identifier 
(UMI)-containing P7 primer (Supplementary Table 9). After three cycles, 
reactions were pooled and purified with a 1.8× AMPure cleanup, following the 
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manufacturer’s instructions and eluted in a total of 344 µl of Qiagen EB. The entire 
purified product was then used for a second round of PCR, split into 16 × 50 µl 
reactions each, with primers P5 and P7 (Supplementary Table 8). The reaction 
was followed in real time with Sybr Green (Thermo Fisher Scientific) and stopped 
before plateauing. PCRs were then pooled and 100 µl of the pooled PCR products 
was purified with a 0.9× AMPure cleanup and eluted in 30 µl for sequencing.

The mRNA for all experiments was treated with Turbo DNase (Thermo Fisher 
Scientific) following the manufacturer’s instructions and then quantified using the 
Qubit RNA Assay kit (Thermo Fisher Scientific). For all samples, we performed 
three 20-µl RT reactions, each with one-third of the sample (up to 500 ng of 
mRNA). RT was performed using SuperScript IV (Thermo Fisher Scientific) and 
a gene-specific primer, which attached a UMI (Supplementary Table 9), following 
the manufacturer’s instructions.

Complementary DNA for each sample was split into eight 50-µl PCRs using 
an indexed P5 primer and P7 (Supplementary Table 8) for three cycles. Reactions 
were then pooled together and purified with a 1.5× AMPure reaction and eluted 
in 129 µl of Qiagen EB. The purified PCR product was then split into six 50-µl 
PCRs with P5 and P7 following in real time with Sybr Green and stopped before 
plateauing. PCRs were then pooled and 100 µl of the pooled PCR products was 
purified with a 0.9–1.8× AMPure cleanup, depending on background banding and 
eluted in 30 µl for sequencing.

Two experiments at a time (each with three DNA replicates and three RNA 
replicates) were run on a 75-cycle NextSeq 550 v.2 High-Output kit with custom 
primers for each assay (Supplementary Table 8).

MPRA to evaluate the impact of enhancer orientation. To test enhancers in both 
orientations relative to the promoter (in the forward and reverse orientations), 
we synthesized the same 2,236 genomic sequences tested above18, along with 100 
controls previously tested in STARR-seq, which are described below12. These 
sequences were synthesized as 192-bp fragments with HSSF-ATGC and HSS-R 
(Supplementary Table 8). The forward orientation was amplified in a 50-µl PCR 
reaction using KAPA HiFi 2× Readymix (Kapa Biosystems) and primers HSS_
pGL4_F and HSS_pGL4_R1; the PCR for the reverse orientation used the primers 
HSS_pGL4_F_orr2 and HSSpGL4_1_orr2 (Supplementary Table 8). PCRs were 
followed in real time with Sybr Green, stopped before plateauing (seven cycles) and 
purified in a 1× AMPure reaction, eluting in 25 µl of Qiagen EB. Overall, 1 µl of 
the purified products were put into a second PCR reaction, which added 15 bp of 
barcode sequence and homology to the pGL4.23c vector; the forward orientation 
used primers HSS_pGL4_F and HSS_pGL4_R2 and the reverse orientation used 
primers HSS_pGL4_F_orr2 and HSS_pGL4_R2 (Supplementary Table 8).

We linearized the pGL4.23c MPRA backbone with HindIII and XbaI (removing 
the minimal promoter and reporter) and gel extracted the backbone and insert 
PCR products. Inserts were cloned into the pGL4.23c plasmid using NEBuilder 
HiFi DNA Assembly Cloning kit (NEB), following the manufacturer’s protocol. 
We transformed 10-β electrocompetent cells (NEB C3020) with the plasmids, grew 
up transformations in 100 ml of LB + Amp and extracted plasmid libraries using a 
ZymoPURE II Plasmid Midiprep kit (Zymo Research).

To clone in the minimal promoter and GFP for the forward orientation, 20 ng 
of the forward backbone was amplified with Len_lib_linF and Len_lib_linR 
(Supplementary Table 8) using NEBNext High-Fidelity 2× PCR Master Mix (NEB); 
the minimal promoter and GFP was amplified from 10 ng of the pLS-mP plasmid 
using minGFP_Len_HAF and minGFP_Len_HAR (Supplementary Table 8). For 
the reverse orientation, 20 ng of the backbone was linearized with Len_lib_linF 
and Rorr_R2_LinR (Supplementary Table 8); for the reverse orientation insert, 
previously gel extracted minimal promoter and GFP from pLS-mP was amplified 
using minPGFP_Revorr_Len_HA_F and Len_lib_linR (Supplementary Table 8).  
Both backbones were treated with Antarctic Phosphatase, following the 
manufacturer’s protocol. All backbones and inserts were gel extracted, with the 
exception of the reverse orientation insert, which we purified in a 1.8× AMPure 
reaction. Plasmid libraries were cloned and extracted as previously described.

Transfections (four independent transfections), DNA/RNA extractions, RT 
of mRNA and qPCRs to amplify barcodes for sequencing were all performed as 
previously described for the enhancer-length experiments. The final PCRs for 
the DNA samples were purified in a 1.5× AMPure reaction, using 50 µl of PCR 
reaction and eluting in 15 µl of Qiagen EB; cDNA PCRs were gel purified. Libraries 
were separately denatured and pooled, pooling twice as much of the RNA samples 
as the DNA samples. Samples were loaded at a final concentration of 1.8 pM on a 
75-Cycle NextSeq v.2 High-Output kit.

MPRA to evaluate the impact of including additional sequence context at 
tested elements. Design of enhancer-length libraries for array synthesis. We chose 
to synthesize the same 2,236 genomic sequences tested above18. We also included 
the top 50 and bottom 50 haplotypes, averaging 409 bp, from a screen conducted 
in the STARR-seq vector12, and designed libraries of 192-bp and 354-bp sequences, 
centered at the position of the previously tested design. We also designed a 
library of 678-bp sequences for the 2,236 genomic sequences above. We extracted 
genomic sequence using bedtools getfasta40. To the 192-bp library, we added the 
HSSF-ATGC sequence to the 5′ end and the HSS-R-clon sequence to the 3′ end 
(Supplementary Table 8).

For the 354-bp library, we split each sequence into two overlapping fragments, 
A and B. Fragment A included positions 1–190 and fragment B included 
positions 161–354. To fragment A, we appended the HSSF-ATGC adaptor to 
the 5′ end and the DO_15R adapter to the 3′ end. To fragment B, we appended 
the DO_5F adapter to the 5′ end and the HSS-R-clon adaptor to the 3′ end 
(Supplementary Table 8).

For the 678-bp library, we only designed the 2,236 sequences from Inoue et al.18. 
We split the sequences into 13 different sets of 172 sequences each. We then  
split each sequence into four fragments. Fragment A included positions 1–190, 
fragment B included positions 161–352, fragment C included positions 323–514 
and fragment D included positions 485–678. Adaptors and primers used for the  
13 sets of HMPA are included in Supplementary Table 10.

Amplification of the 192-bp library. All 192-bp enhancers were amplified from the 
array using HSSF-ATGC and HSS-R-clon (Supplementary Table 8) with KAPA 
HiFi HotStart Uracil+ ReadyMix PCR kit (Kapa Biosystems) with Sybr Green 
(Thermo Fisher Scientific) on a MiniOpticon Real-Time PCR System (Bio-Rad) 
and stopped before plateauing.

Multiplex pairwise assembly for 354-bp library. All 5′ fragments were amplified 
off the array using HSSF-ATGC and DO_15R_PU (Supplementary Table 8) with 
KAPA HiFi HotStart Uracil+ ReadyMix PCR kit (Kapa Biosystems) and stopped 
before plateauing. All 3′ fragments were amplified off the array using DO_5F_PU 
and HSS-95R (Supplementary Table 8). Both were purified using a 1.8× AMPure 
cleanup and eluted in 20 µl Qiagen EB. Then, 2 µl of USER enzyme (NEB) was 
added directly to each purified PCR product and incubated for 15 min at 37 °C 
followed by 15 min at room temperature. Reactions were then treated with the 
NEBNext End Repair Module (NEB) following the manufacturer’s protocol and 
purified using the DNA Clean and Concentrator 5 (Zymo Research) and eluted 
in 12 µl EB, following the manufacturer’s protocol. We then quantified DNA 
concentrations for both treated samples using a Qubit and diluted samples to 
0.75 ng µl−1. We then assembled the 5′ and 3′ fragments as described previously25. 
Briefly, fragments were allowed to anneal and extend for five cycles with KAPA 
HiFi 2× HotStart Readymix (Kapa Biosystems) before primers HSSF-ATGC and 
DO_95R were added for amplification (Supplementary Table 8).

Hierarchical multiplex pairwise assembly for 678-bp library. All libraries were 
amplified off the array using the primers indicated in Supplementary Table 10 with 
KAPA HiFi HotStart Uracil+ ReadyMix PCR Kit (Kapa Biosystems) as described 
above. During the first round of assembly, fragments A and B were assembled 
with HSSF-ATGC and DO_31R_PU and fragments C and D were assembled 
with DO_8F_PU and HSS_R (Supplementary Table 10). Assembled libraries 
were then purified with a 0.65× Ampure cleanup following the manufacturer’s 
protocol and eluted in 20 µl. Then, 2 µl of USER enzyme (NEB) was added to 
the purified assembly reactions and incubated at 37 °C for 15 min followed by 
15 min at room temperature and then repaired using the NEBNext End Repair 
Module (NEB), following the manufacturer’s protocol and purified using the DNA 
Clean and Concentrator 5 (Zymo Research) and eluted in 10 µl EB. All libraries 
were then quantified using the Qubit dsDNA HS Assay kit (Thermo Fisher 
Scientific) and eluted to 0.75 ng µl−1. Assemblies AB and CD were then assembled 
together following the multiplex pairwise assembly protocol25. After the second 
assembly, libraries were purified using a 0.6× AMPure cleanup and eluted in 
30 µl EB. We then amplified 1 µl of each assembly with HSSF-ATGC-pu1F and 
HSS-R-clon-pu1R to add flow cell adaptors and indexes (Supplementary Table 8). 
We performed the assembly for each set of 172 sequences separately, as well as for 
different combinations of sets, up to all 2,236 sequences at once41.

Sequence validation of assembled libraries. Before cloning, we verified assembly 
and uniformity of our libraries. The multiplex pairwise assembly library (2,336 
354-mers) was sequenced on a Miseq v.3 600 cycle kit with paired-end 305 bp 
reads. Reads were merged with PEAR v.0.9.5 (ref. 42) and aligned to a reference 
fasta file with BWA mem v0.7.10-r789 (ref. 43). Each of the 13 hierarchical pairwise 
assembly sub-libraries (172 678-mers) as well as different complexities (344, 688, 
1,032, 1,376, 1,720, 2,064 and 2,236) were sequenced on a Miseq v.3 600 cycle 
kit with paired-end 300 bp reads. Paired-end reads were aligned to a reference 
fasta file with BWA mem v0.7.10-r789 (ref. 43). As our HMPA library was longer 
than the maximum Illumina sequencing length (600 bp), we prepared our HMPA 
sub-library 3 (172 678-mers) for sequencing on the PacBioSequel System using 
V2.1 chemistry (Pacific Biosciences). The library was amplified with pu1L and 
pu1R and sent to the University of Washington PacBio Sequencing Services for 
library preparation and sequencing. We obtained 312,277 productive zero-mode 
waveguides with an average Pol Read length of 30,806 bp. After generating circular 
consensus sequences, we obtained 218,240 circular consensus sequence reads with 
a mean read length of 882 bp.

Barcoding and cloning of length libraries into pGL4.23c. We performed a two-step 
PCR to add barcodes and cloning adaptors for pGL4.23c onto our three different 
libraries. For the 192-mer and 354-mer library, we amplified 20 ng of the library 
with HSS-pGL4_F and HSS-pGL4_R1 (Supplementary Table 8) using NEBNext 
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High-Fidelity 2× PCR Master Mix (NEB) for 16 cycles. For the 678-mer libraries, 
we pooled all 13 sub-libraries at equal concentrations and then amplified 20 ng 
with the same primers and conditions above. All PCR products were purified with 
a 1.5× AMPure cleanup following the manufacturer’s instructions and eluted in 
50 µl. We then used 1 µl of each purified reaction for a second PCR to append the 
15-bp degenerate barcodes and cloning adaptors. For the second reaction, we used 
HSS-pGL4_F and HSS_pGL4_R2 (Supplementary Table 8).

We linearized the pGL4.23c MPRA backbone, while removing the minimal 
promoter and reporter using HindIII and XbaI. We treated the linearized plasmid 
with Antarctic Phosphatase following the manufacturer’s protocol and then gel 
extracted the plasmid on a 1% agarose gel. We then cloned all three libraries into 
the pGL4.23c plasmid using the NEBuilder HiFi DNA Assembly Cloning kit 
(NEB), following the manufacturer’s protocol. The library was then transformed 
into 10-β electrocompetent cells (NEB C3020), grown in 100 ml of LB + Amp and 
extracted using the ZymoPURE II Plasmid Midiprep kit (Zymo Research). We then 
re-linearized each library with Len_lib_linF and Len_lib_linR and amplified the 
minimal promoter and GFP from 10 ng of the pLS-mP plasmid using minGFP_
Len_HAF and minGFP_Len_HAR (Supplementary Table 8). We then gel extracted 
all linearized libraries and the minimal promoter + GFP insert on a 1% agarose 
gel. We inserted the minimal promoter and GFP using the NEBuilder HiFi DNA 
Assembly Cloning kit (NEB) as described above.

MPRA of all enhancer-length libraries. The day before transfection, we seeded 
HepG2 cells in five 10-cm dishes. On the day of transfection, we combined the 
192, 354 and 678 pGL4.23c libraries at a 1:1:1 molar ratio and transfected 21 µg of 
pooled libraries into each 10-cm dish using Lipofectamine 3000 (Thermo Fisher 
Scientific), following the manufacturer’s protocol. At 48 h after transfection, we 
extracted DNA and RNA from each replicate using the AllPrep DNA/RNA Mini 
kit (Qiagen), following the manufacturer’s instructions.

We added UMIs to a total of 4 µg of DNA from each replicate split across eight 
reactions with KAPA2G Robust HotStart ReadyMix (Kapa Biosystems) for three 
cycles with a 65 °C annealing and 40 s extension, using P5-pLS-mP-5bc-idx and 
P7-pGL4.23c-UMI (Supplementary Table 8). After three cycles, reactions were 
pooled and purified with a 1.8× AMPure cleanup, following the manufacturer’s 
instructions and eluted in a total of 87 µl of Qiagen EB. The entire purified 
product was then used for a second round of PCR, split into six 50-µl reactions 
each, with primers P5 and P7. The reaction was followed in real time with Sybr 
Green and stopped before plateauing. PCRs were then pooled and 100 µl of the 
pooled PCR products was purified with a 0.9× AMPure cleanup and eluted in 
30 µl for sequencing.

RNA for each replicate was treated with Turbo DNase (Thermo Fisher 
Scientific) following the manufacturer’s protocol and then quantified using the 
Qubit RNA Assay kit (Thermo Fisher Scientific). For all samples, we performed 
two 15-µl RT reactions, using a total of 15.75 µl RNA (1/2 total). RT was performed 
using Thermo Fisher SuperScript IV (Thermo Fisher Scientific) and a gene-specific 
primer (P7-pGL4.23c-UMI), which attached a UMI, following the manufacturer’s 
instructions. The cDNA for each sample was split into four 50-µl PCRs using 
P5-pLS-mP-5bc-idx and P7 for three cycles. Reactions were then pooled together 
and purified with a 1.5× AMPure reaction and eluted in 64.5 µl of Qiagen EB. 
The purified PCR product was then split into three 50-µl PCRs with P5 and P7, 
followed in real time with Sybr Green (Thermo Fisher Scientific) and stopped 
before plateauing (11 cycles). PCR products were purified with a 1.5× AMPure 
reaction before sequencing on a 75-cycle NextSeq 550 v.2 High-Output kit.

For barcode associations, we amplified 5 ng of each library with P5_pGL4_
Idx_assF and P7-pGL4-ass-R (Supplementary Table 8), following in real time 
with Sybr Green for 14–15 cycles. PCR products were purified with a 1× AMPure 
cleanup and eluted in 20 µl of Qiagen EB for sequencing. Libraries were separately 
denatured and pooled to account for part of the clustering bias on the NextSeq.  
We brought the 192 library to a final concentration of 1.65 pM, the 354 library  
to a final concentration of 2.15 pM and the 678 library to a final concentration  
of 2.9 pM. We then pooled an equal volume of each library and loaded on a  
300 cycle NextSeq 550 v.2 Mid-Output kit with an 80 bp read 1 and 213 bp read 2  
(to sequence part of contributing oligonucleotides A, C and D).

MPRA processing pipeline. Reproducible MPRA analysis pipeline implementation. 
We developed and utilized a fully reproducible processing pipeline to process the 
raw MPRA data. The sections below document the various components of the 
pipeline, which borrow heavily from our earlier work18 and were implemented into 
a reproducible Nextflow-based codebase named MPRAflow44.

Associating barcodes to designed elements. For each of the barcode association 
libraries, we generated Fastq files with bcl2fastq v.2.18 (Illumina), splitting the 
sequencing data into an index file delineating the barcode and two paired-end read 
files delineating the corresponding element linked to the barcode. If the paired-end 
reads overlapped in sequence, they were merged into one and aligned using BWA 
mem v0.7.10-r789 (ref. 43) to a reference fasta file consisted of the designed  
elements (Supplementary Table 2). We carried forward the subset of merged 
reads whose mapped length corresponded to the expected length of the designed 
element ± 5 bp (171 ± 5, 192 ± 5, 354 ± 5 and 678 ± 5, depending on the element size),  

allowing indels or mismatches. To minimize the impact of sequencing errors,  
we associated a barcode to an element if: (1) the barcode–element pair was 
sequenced at least three independent times and (2) ≥90% of the barcode mapped 
to a single element. These barcode associations were then used as a dictionary to 
match barcodes detected in the RNA and DNA sequencing libraries in different 
MPRA designs.

Replicates, normalization and RNA/DNA activity scores. Barcodes were counted 
for RNA and DNA samples for each MPRA experiment, using UMIs to collapse 
barcodes derived from the same molecule during PCR and mapped to the 
element they were linked to, as identified by the dictionary of barcode–element 
associations. To normalize RNA and DNA for different sequencing depths in each 
sample, we followed a nearly identical scheme as one we had previously devised18. 
Briefly, for each replicate of each MPRA design, we first considered the subset of 
barcodes that were observed for both the RNA and DNA samples of the replicate. 
We then summed up the counts of all barcodes contributing to each element 
and computed the normalized counts as the counts per million (cpm) sequenced 
reads of that library. Finally, we computed enhancer activity scores as log2(RNA 
cpm/DNA cpm). To account for the differential scale among replicates of each 
experiment, we divided the RNA/DNA ratios by the median across the replicate 
value before averaging them. Due to low counts in the initial round of sequencing 
and poor sample quality, the three replicates from the 5′/3′ MT and 3′/3′ MT 
were re-sequenced and the data from each pair of technical replicates were 
pooled across the two independent sequencing runs. Even after pooling, the first 
replicates of these two assays exhibited poorer inter-replicate concordance than 
the other replicates (Fig. 2a and Supplementary Fig. 3) and thus were excluded 
during replicate averaging (Supplementary Table 2). In practice, this decision very 
modestly altered the numerical results and did not change the study’s conclusions.

Modeling and analyses. Features considered. For each candidate enhancer, we 
computed a total of 915 features derived from either: (1) the sequence itself or 
(2) experimentally measured information, computed as a mean signal extracted 
from the corresponding region of the human genome (Supplementary Tables 3 
and 4). The sequence-based features represent the conservation of the sequence, 
general G/C content, predicted chromatin state and likelihood of binding to an 
assortment of transcription factors and RNA-binding proteins. In contrast, the 
experimentally derived features represent empirical measurements of chromatin/
epigenetic state, binding to transcription factors or transcriptional activity. The 
features were derived from custom Perl scripts, the UCSC genome browser45, 
DeepSEA v.0.94 (ref. 46), DeepBind v.0.11 (ref. 47), with epigenomic data derived 
from the Epigenomics Roadmap Consortium48, CAGE data from the FANTOM 
Consortium33 and ChIP-seq data from the ENCODE Consortium7.

Feature pre-processing. Right-skewed data such as ChIP-seq and CAGE signal were 
log-transformed to approximate a normal distribution, and each feature was then 
z score normalized to scale the features similarly. This enabled a direct comparison 
of coefficients among features derived from the resulting linear models.

Model training. As described before18, we trained a lasso regression model on 
each of ten folds of the data, selecting enhancers that were measured with at least 
ten independent barcodes to reduce the impact of measurement noise in the 
assessment of model quality. A lasso regression model was chosen specifically 
because it employs an L1 regularization penalty, which leads to the selection of the 
fewest features that maximally explain the data. The strength of the regularization 
was controlled by a single λ parameter, which was optimized using tenfold CV on 
the entire dataset. To evaluate the most relevant features selected, we trained a lasso 
regression model on the full dataset and visualized the top 10–30 coefficients with 
the greatest magnitude. A full table of the selected features and their coefficients 
are provided (Supplementary Table 5). To compare differential enhancer activity 
between a pair of assays, we fit a loess (‘locally estimated scatterplot smoothing’) 
regression between one assay relative to the other and computed residuals from 
this fit, using the ‘loess’ function in R. We then fitted lasso regression models to 
explain these residuals, based upon the aforementioned procedure.

Luciferase assays. The ‘medium’, ‘long’ and ‘deleted’ versions of ten enhancers 
(total 30 sequences), APOE enhancer (positive control) and neg2 sequence 
(negative control) were synthesized along with minimal promoter and adaptor 
sequences (Supplementary Table 8) and cloned into the BglII and NcoI site of 
the pGL4.23c vector by Twist Bioscience. These were selected on the basis of 
highest differential activities, reproducibility and base balance (for synthesis). 
As two of them (chr2:106744003-106744357_medium and chr10:114391246-
114391924_del) failed the cloning, these sequences were synthesized by Twist 
Bioscience and manually cloned into the BglII and NcoI site of the pGL4.23c vector 
using NEBuilder HiFi DNA Assembly Cloning kit (NEB). The plasmid sequences 
were confirmed by Sanger sequencing. All 32 plasmids and empty pGL4.23c were 
individually transfected along with pGL4.74 (Promega) into 1 × 104 HepG2 cells, 
as previously described18. Four independent replicate cultures were transfected. 
Firefly and Renilla luciferase activities were measured on a Glomax microplate 
reader (Promega) using the Dual-Luciferase Reporter Assay System (Promega). 
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Enhancer activity was measured as the fold change of each plasmid’s firefly 
luciferase activity normalized to Renilla luciferase activity.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
We developed a fully reproducible MPRA processing pipeline available to process 
the data into final enhancer activity scores. Raw and processed data have been 
deposited in the Gene Expression Omnibus at accession number GSE142696.

Code availability
A reproducible processing pipeline for MPRA data is available as a Nextflow-based 
MPRA processing pipeline named MPRAflow (https://github.com/shendurelab/
MPRAflow)44.
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