
Genome	 Sciences	 373	
Genome	 Informa1cs	 	

Quiz	 Sec1on	 #1	
March	 31,	 2015	

About me, course logistics, etc.

Matthew’s contact info
Email: mwsnyder@uw.edu
Phone: 206-685-3720

Office hours: Mondays 2:00-3:00pm

 Foege building, room S110
 …or by appointment

About me, course logistics, etc.

Homework policy:
 No late homework accepted without
 PRIOR arrangements

 Grading is equally about your effort
 and your execution

 First homework assigned tomorrow

About me, course logistics, etc.

What is the quiz section all about?
 not a “how-to” homework session

 mostly we will learn Python and
 review in-class material

 attendance is not required, but the
 material covered in section is required

Questions about
course logistics?

What is an algorithm?

Formally: an exact procedure, or set of
instructions, to achieve a predictable final
result from a given input

Colloquially: a thorough method for
solving a problem according to step-by-
step instructions

Some key features of algorithms

Typically written in “pseudocode” or similar

Inputs and outputs specified at the outset

Often designed to achieve some goal in the
“best” way possible
•  fastest

•  least memory

•  most accurate

Example of an algorithm: smallest number

Algorithm FindSmallestNumber
 Input: three numbers A, B, and C
 Output: the largest number

Find the smallest of three numbers

Example of an algorithm: smallest number

Algorithm FindSmallestNumber
 Input: three numbers A, B, and C
 Output: the largest number

current_smallest ß A

if B < current_smallest:

 current_smallest ß B

else:

 [do nothing]

if C < current_smallest:

 current_smallest ß C [… else: do nothing]

return current_smallest

Find the smallest of three numbers

Example of an algorithm: smallest number

Algorithm FindSmallestNumber
 Input: three numbers A, B, and C
 Output: the largest number

current_smallest ß A

if B < current_smallest:

 current_smallest ß B

else:

 [do nothing]

if C < current_smallest:

 current_smallest ß C [… else: do nothing]

return current_smallest

Find the smallest of three numbers

Find the greatest common divisor of two numbers

If A > B, and A & B have greatest common divisor G,
then G is also the GCD of A and (A – B)

Example: A = 63, B = 18

•  What is the GCD?

•  Can we generalize this process as a set of rules or
steps to follow to ALWAYS find the GCD?

Another example: Euclid’s algorithm

Algorithm EuclidGCD
 Input: two numbers: A and B
 Output: the GCD of A and B

Find the greatest common divisor of two numbers

Another example: Euclid’s algorithm

Algorithm EuclidGCD
 Input: two numbers: A and B
 Output: the GCD of A and B

start:
if B = 0 then output A (else: keep going)

if A > B then A ß A – B

else B ß B – A

go to start

Find the greatest common divisor of two numbers

Another example: Euclid’s algorithm

Source: http://en.wikipedia.org/wiki/Algorithm#/media/
File:Euclid_flowchart.svg

Often we can draw an
algorithm as a flowchart

What’s the problem with
this flowchart?

How could we improve it?

Common pitfalls and issues to consider

What if I enter a zero?

What if I enter a negative number?

What if I enter a fraction?

Is my algorithm guaranteed to ever finish?

In class example: algorithm for factorial

Recall: for any positive integer k,

 k! = k * (k -1) * (k-2) * … * 1

What is an algorithm for calculating
the factorial?

Algorithms are not the same as
computer code!

But, algorithms can be implemented
in programming languages

You have already done hard work!

Why do we program?

Get Stuff Done.

– Automate repeated tasks
– Extract information from huge amounts

of data

– Manipulate or convert data to get it in
the right format

What tools do we need to write a program?

Variables

Flow control

Syntax

Grammar

Patience

Practice

Comments

Internet

Technical stuff Important stuff

What tools do we need to write a program?

Variables

Flow control

Syntax

Grammar

Patience

Practice

Comments

Internet

Technical stuff Important stuff

Editor

Interpreter

Practical stuff

Today: focus on editor & interpreter

SublimeText: http://www.sublimetext.com/

PyCharm: https://www.jetbrains.com/pycharm/download/
	

Python Editors: too many choices!

The Python Interpreter

Typing your script line-by-line:
not a good plan

The Python Interpreter

Write your script in an editor,
and then “call” it or “run” it
from the command line

In-class example: Hello, world!

And now, a few comments about comments

What is a comment in code?

A comment is a line, or part of a line, that is skipped
by the interpreter.

In other words, it’s not interpreted. It’s just there.

In python, comments start with the pound sign (“#”)

Why do we comment our code?

Help yourself remember what you were
thinking

Help other people understand what you
were thinking

Help your grader figure out what you were
trying to do, and what went wrong!

Commenting for beginners

Your homework MUST HAVE COMMENTS

It’s OK to “over-comment”

Usually you put comments just above / before
the part of the program you’re referring to

